Bacteroides stercorirosoris sp. nov. and Bacteroides faecichinchillae sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces

2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1145-1150 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Sayaka Tsuchida ◽  
Koh Kawasumi ◽  
Hiromi Amao ◽  
...  

Strains of Gram-negative anaerobic rods were isolated from chinchilla (Chinchilla lanigera) faeces, and three strains, ST161T, ST33 and ST37T, were investigated taxonomically. Based on phylogenetic analyses and specific phenotypic characteristics, the three strains were allocated to the genus Bacteroides . Phylogenetic analyses of their 16S rRNA gene sequences revealed that strain ST161T formed a distinct line of descent, with highest sequence similarity to strain ST33 (98.7 %) and Bacteroides oleiciplenus JCM 16102T (97.7 %). High levels of DNA–DNA relatedness (79–89 %) were found between strains ST161T and ST33, but low levels were found between strain ST161T and B. oleiciplenus JCM 16102T (33–37 %) and between strain ST33 and B. oleiciplenus JCM 16102T (33–37 %). These data clearly indicated that strains ST161T and ST33 represent a single novel species. 16S rRNA gene sequence analyses showed that strain ST37T also formed a distinct line of descent, with highest sequence similarity to Bacteroides acidifaciens JCM 10556T (96.5 %) and Bacteroides caccae JCM 9498T (95.6 %). Analysis of hsp60 gene sequences also supported these relationships. Based on phenotypic and phylogenetic characteristics, two novel species, Bacteroides stercorirosoris sp. nov. and Bacteroides faecichinchillae sp. nov., are thus proposed. The type strains of B. stercorirosoris and B. faecichinchillae are ST161T ( = JCM 17103T = CCUG 60872T) and ST37T ( = JCM 17102T = CCUG 60873T), respectively. The DNA G+C contents of strains ST161T and ST37T were 45.7 and 41.0 mol%, respectively.

2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1207-1212 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Jian-Wei Guo ◽  
Li Li ◽  
...  

A novel endophytic actinobacterium, designated EGI 6500707T, was isolated from the surface-sterilized root of a halophyte Anabasis elatior (C. A. Mey.) Schischk collected from Urumqi, Xinjiang province, north-west China, and characterized using a polyphasic approach. Cells were Gram-stain-positive, non-motile, short rods and produced white colonies. Growth occurred at 10–45 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 8) and in presence of 0–4 % (w/v) NaCl (optimum 0–3 %). The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol and phosphatidylglycerol. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content of strain EGI 6500707T was 69.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EGI 6500707T should be placed in the genus Frigoribacterium (family Microbacteriaceae , phylum Actinobacteria ), and that the novel strain exhibited the highest 16S rRNA gene sequence similarity to Frigoribacterium faeni JCM 11265T (99.1 %) and Frigoribacterium mesophilum MSL-08T (96.5 %). DNA–DNA relatedness between strain EGI 6500707T and F. faeni JCM 11265T was 47.2 %. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain EGI 6500707T represents a novel species of the genus Frigoribacterium , for which the name Frigoribacterium endophyticum sp. nov. is proposed. The type strain is EGI 6500707T ( = JCM 30093T = KCTC 29493T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


Author(s):  
Xiao-Xian Huang ◽  
Jia Shang ◽  
Lian Xu ◽  
Rui Yang ◽  
Ji-Quan Sun

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, named SJ-16T, was isolated from desert soil collected in Inner Mongolia, northern PR China. Strain SJ-16T grew at pH 6.0–11.0 (optimum, pH 8.0–9.0), 4–40 °C (optimum, 30–35 °C) and in the presence of 0–8 % (w/v) NaCl (optimum, 0–2 %). The strain was negative for catalase and positive for oxidase. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SJ-16T clustered with Luteimonas chenhongjianii 100111T and Luteimonas terrae THG-MD21T, and had 98.8, 98.6, 98.3 and <97.9 % of 16S rRNA gene sequence similarity to strains L. chenhongjianii 100111T, L. terrae THG-MD21T, L. aestuarii B9T and all other type strains of the genus Luteimonas , respectively. The major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1  ω9c). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids, and ubiquinone-8 was the only respiratory quinone. The genomic DNA G+C content was 69.3 mol%. The digital DNA–DNA hybridization and average nucleotide identity values of strain SJ-16T to L. chenhongjianii 100111T, L. terrae THG-MD21T, L. rhizosphaerae 4-12T and L. aestuarii B9T were 36.9, 37.5, 24.0 and 21.1 %, and 80.9, 80.6, 80.7 and 76.3 %, respectively. Based on phenotypic, physiological and phylogenetic results, strain SJ-16T represents a novel species of the genus Luteimonas , for which the name Luteimonas deserti is proposed. The type strain is SJ-16T (=CGMCC 1.17694T=KCTC 82207T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2277-2281 ◽  
Author(s):  
Eu Jin Chung ◽  
Jeong Ae Park ◽  
Prabhat Pramanik ◽  
Fehmida Bibi ◽  
Che Ok Jeon ◽  
...  

A Gram-negative, aerobic, short rod-shaped bacterium, designated strain YC6898T, was isolated from the surface-sterilized root of a halophyte (Suaeda maritima) inhabiting tidal flat of Namhae Island, Korea. Strain YC6898T grew optimally at 30–37 °C and pH 6.5–7.5. The strain inhibited mycelial growth of Pythium ultimum and Phytophthora capsici. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YC6898T belongs to the genus Hoeflea in the family Phyllobacteriaceae . Its closest relatives were Hoeflea alexandrii AM1V30T (96.7 % 16S rRNA gene sequence similarity), Hoeflea anabaenae WH2KT (95.7 %), Hoeflea phototrophica DFL-43T (95.5 %) and Hoeflea marina LMG 128T (94.8 %). Strain YC6898T contained Q-10 as the major ubiquinone. The major fatty acids of strain YC6898T were C18 : 1ω7c (61.1 %), C16 : 0 (11.9 %), 11-methyl C18 : 1ω7c (9.6 %) and C19 : 0 cyclo ω8c (8.0 %). The polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, unknown lipids and an unknown glycolipid. The total genomic DNA G+C content was 53.7 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain YC6898T represents a novel species of the genus Hoeflea , for which the name Hoeflea suaedae sp. nov. is proposed. The type strain is YC6898T ( = KACC 14911T = NBRC 107700T).


Author(s):  
Gui Zhang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
Shan Lu ◽  
...  

Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2–64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1  ω9c and C18 : 0 ante/C18 : 2  ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35–37 °C, 0.5 % (w/v) NaCl and pH 7.0–8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).


Author(s):  
Rui Yin ◽  
Yan-Jun Yi ◽  
Zhuo Chen ◽  
Guan-Jun Chen ◽  
Yan-Xia Zhou ◽  
...  

A Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15T, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15T represents a distinct line of the family Flavobacteriaceae . Strain Dm15T had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Arcticiflavibacter luteus (96.7 %) and 93.7–96.4 % sequence similarity to other phylogenetic neighbours ( Bizionia paragorgiae , Winogradskyella thalassocola , Ichthyenterobacterium magnum , Psychroserpens burtonensis and Arcticiflavibacter luteus ) in the family Flavobacteriaceae . The novel isolate was able to grow at 10–40 °C (optimum, 30–33 °C), pH 7.0–9.0 (optimum, pH 7.0–7.5) and with 0.5–6.0 % NaCl (optimum 2.0–3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 431 bp and 34.1mol% G+C content. Especially, there were some specific genes coding for cellulase and alginate lyase, which provided a basis for the above phenotypic characteristics. The strain's genome sequence showed 71.1–80.2 % average amino acid identity values and 71.8–77.7 % average nucleotide identity values compared to the type strains of related genera within the family Flavobacteriaceae . It shared digital DNA–DNA hybridization identity of 19.8 and 20.9 % with I. magnum and A. luteus , respectively. The sole menaquinone was MK-6. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids included six unidentified polar lipids, four unidentified aminolipids and phosphatidylethanolamine. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain Dm15T represents a novel species of a new genus in the family Flavobacteriaceae , phylum Bacteroidetes , for which the name Flavihalobacter algicola gen. nov., sp. nov. is proposed. The type strain is Dm15T (KCTC 42256T=CICC 23815T).


Author(s):  
Juan Zhou ◽  
Yuyuan Huang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four aerobic, Gram-stain-positive, rod-shaped bacteria (HY60T, HY54, HY82T and HY89) were isolated from bat faeces of Hipposideros and Rousettus species collected in PR China. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the four novel strains formed two separate but adjacent subclades close to Microbacterium agarici CGMCC 1.12260T (97.6–97.7 % similarity), Microbacterium humi JCM 18706T (97.3–97.5 %) and Microbacterium lindanitolerans JCM 30493T (97.3–97.4 %). The 16S rRNA gene sequence similarity was 98.3 % between strains HY60T and HY82T, and identical within strain pairs HY60T/HY54 and HY82T/HY89. The DNA G+C contents of strains HY60T and HY82T were 61.9 and 63.3 mol%, respectively. The digital DNA–DNA hybridization and average nucleotide identity values between each novel strain and their closest relatives were all below the 70 % and 95–96 % thresholds for species delimitation, respectively. All four novel strains contained anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0 as the main fatty acids, MK-11 and MK-12 as the major respiratory quinones, and diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid as the predominant polar lipids. The cell-wall peptidoglycan was of B type and contained alanine, glutamate, glycine and ornithine. The acyl type of the muramic acid was glycolyl. The whole-cell sugars were rhamnose and ribose. Based on the foregoing polyphasic analyses, it was concluded that the four uncharacterized strains represented two novel species of the genus Microbacterium , for which the names Microbacterium chengjingii sp. nov. [type strain HY60T (=CGMCC 1.17468T=GDMCC 1.1951T=KACC 22102T)] and Microbacterium fandaimingii sp. nov. [type strain HY82T (=CGMCC 1.17469T=GDMCC 1.1949T=KACC 22101T)] are proposed, respectively.


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1617-1621 ◽  
Author(s):  
Shungui Zhou ◽  
Jia Tang ◽  
Dongxing Qin ◽  
Qin Lu ◽  
Guiqin Yang

A thermophilic bacterium, designated DX-1T, was isolated from the anode biofilm of a microbial fuel cell (MFC). Cells of strain DX-1T were oxidase-positive, catalase-positive and Gram-staining-negative. The strain was found to be rod-shaped and non-motile and to produce subterminal spores. The strain was able to grow with NaCl at concentrations ranging from 0 to 6 %, at temperatures of 25–60 °C (optimum 55 °C) and pH 6.0–8.0 (optimum pH 7.0). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DX-1T formed a cluster with Ureibacillus thermosphaericus DSM 10633T (96.9 % 16S rRNA sequence similarity), Ureibacillus composti DSM 17951T (95.8 %), Ureibacillus thermophilus DSM 17952T (95.7 %) and Ureibacillus terrenus DSM 12654T (95.3 %). The G+C content of the genomic DNA was 40.4 mol%. The major quinone was MK-7, the peptidoglycan type was l-Lys←d-Asp, and the major cellular fatty acids (>5 %) were iso-C16 : 0 and iso-C14 : 0. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phospholipids of unknown composition. Based on phenotypic characteristics, chemotaxonomic features and results of phylogenetic analyses, the strain was determined to represent a distinct novel species of the genus Ureibacillus , and the name proposed for the novel species is Ureibacillus defluvii sp. nov., with type strain DX-1T ( = CGMCC 1.12358T = KCTC 33127T).


Sign in / Sign up

Export Citation Format

Share Document