Lactobacillus faecis sp. nov., isolated from animal faeces

2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4502-4507 ◽  
Author(s):  
Akihito Endo ◽  
Tomohiro Irisawa ◽  
Yuka Futagawa-Endo ◽  
Seppo Salminen ◽  
Moriya Ohkuma ◽  
...  

Three lactic acid bacteria were isolated from faeces of a jackal (Canis mesomelas) and raccoons (Procyron lotor). The isolates formed a subcluster in the Lactobacillus salivarius phylogenetic group, closely related to Lactobacillus animalis , Lactobacillus apodemi and Lactobacillus murinus , by phylogenetic analysis based on 16S rRNA and recA gene sequences. Levels of DNA–DNA relatedness revealed that the isolates belonged to the same taxon and were genetically separated from their phylogenetic relatives. The three strains were non-motile, obligately homofermentative and produced l-lactic acid as the main end-product from d-glucose. The strains metabolized raffinose. The major cellular fatty acids in the three strains were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Based on the data provided, it is concluded that the three strains represent a novel species of the genus Lactobacillus , for which the name Lactobacillus faecis sp. nov. is proposed. The type strain is AFL13-2T ( = JCM 17300T = DSM 23956T).

2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


Author(s):  
Ji Young Jung ◽  
Hye Kyeong Kang ◽  
Hyun Mi Jin ◽  
Sang-Soo Han ◽  
Young Chul Kwon ◽  
...  

A Gram-positive, facultative anaerobic, catalase-negative, non-motile, non-spore-forming and rod-shaped lactic acid bacterium strain, denoted as NFFJ11T and isolated from total mixed fermentation feed in the Republic of Korea, was characterized through polyphasic approaches, including sequence analyses of the 16S rRNA gene and housekeeping genes (rpoA and pheS), determination of average nucleotide identity and in silico DNA–DNA hybridization, fatty acid methyl ester analysis, and phenotypic characterization. Phylogenetic analyses based on 16S rRNA, rpoA and pheS gene sequences revealed that strain NFFJ11T belonged to the genus Companilactobacillus . The 16S rRNA gene sequence of strain NFFJ11T exhibited high similarity to Companilactobacillus formosensis S215T (99.66 %), Companilactobacillus farciminis Rv4 naT (99.53 %), Companilactobacillus crustorum LMG 23699T (99.19 %), Companilactobacillus futsaii YM 0097T (99.06 %), Companilactobacillus zhachilii HBUAS52074T (98.86 %) and Companilactobacillus heilongiiangensis S4-3T (98.66 %). However, average nucleotide identity and in silico DNA–DNA hybridization values for these type strains were in the range of 79.90–92.93 % and 23.80–49.30 %, respectively, which offer evidence that strain NFFJ11T belongs to a novel species of the genus Companilactobacillus . The cell-wall peptidoglycan type was A4α (l-Lys–d-Asp) and the G+C content of the genomic DNA was 35.7 mol%. The main fatty acids of strain NFFJ11T were C18 : 1  ω9c (43.3 %), C16 : 0 (20.1 %) and summed feature 7 (18.3 %; comprising any combination of C19 : 1  ω7c, C19 : 1  ω6c and C19 : 0 cyclo ω10c). Through polyphasic taxonomic analysis, it was observed that strain NFFJ11T represents a novel species belonging to the genus Companilactobacillus , for which the name Companilactobacillus pabuli sp. nov. is proposed. The type strain is NFFJ11T (= KACC 21771T= JCM 34088T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3631-3635 ◽  
Author(s):  
Liang Wang ◽  
Shixue Zheng ◽  
Dan Wang ◽  
Lu Wang ◽  
Gejiao Wang

Strain GZ436T was Gram-stain-negative, aerobic, non-motile, rod-shaped and isolated from the soil of a coal mine. 16S rRNA gene phylogenetic analysis showed that this strain clustered with Thermomonas brevis LMG 21746T (97.5 %), Thermomonas haemolytica A50-7-3T (96.3 %), Thermomonas koreensis KCTC 12540T (96.4 %), Thermomonas hydrothermalis SGM-6T (95.5 %) and Thermomonas fusca LMG 21737T (95.1 %). The major isoprenoid quinone was Q-8. The DNA G+C content was 67 mol%. Strain GZ436T contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and an unknown lipid as the major polar lipids. The predominant cellular fatty acids (>5 %) were iso-C15 : 0, iso-C11 : 0, iso-C11 : 0 3-OH, iso-C17 : 1ω9c, C16 : 0 and summed feature 3. The DNA–DNA relatedness value between strain GZ436T and T. brevis LMG 21746T was 54±0.4 %. According to phenotypic and phylogenetic characteristics, strain GZ436T represents a novel species of the genus Thermomonas , for which the name Thermomonas carbonis sp. nov. is proposed. The type strain is GZ436T ( = CCTCC AB 2013364T = KCTC 42013T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3624-3630 ◽  
Author(s):  
Eun Jin Choi ◽  
Hyun Mi Jin ◽  
Kyung Hyun Kim ◽  
Che Ok Jeon

A Gram-staining-positive, aerobic, motile bacterium, designated strain MJ3T, was isolated from myeolchi-jeot (anchovy jeotgal), a traditional fermented seafood in South Korea. Cells were non-endospore-forming cocci showing catalase- and oxidase-positive reactions. Growth of strain MJ3T was observed at 15–45 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 1–24 % (w/v) NaCl (optimum, 10 % NaCl). Phylogenetic inference based on 16S rRNA gene sequences showed that strain MJ3T formed a tight phyletic lineage with members of the genus Salimicrobium . Strain MJ3T was related most closely to Salimicrobium salexigens 29CMIT, Salimicrobium album DSM 20748T, Salimicrobium flavidum ISL-25T, Salimicrobium luteum BY-5T and Salimicrobium halophilum DSM 4771T, with similarities of 98.8 %, 98.7 %, 98.6 %, 98.4 % and 98.3 %, respectively. However, the DNA–DNA relatedness values between strain MJ3T (KF732837) and S. salexigens DSM 22782T, S. album DSM 20748T, S. flavidum DSM 23127T, S. luteum KCTC 3989T and S. halophilum JCM 12305T were 60±5.4 %, 58.5±6.5 %, 43.6±5.5 %, 37.2±5.8 % and 16.7±0.2 %, respectively. Chemotaxonomic data (sole isoprenoid quinone, MK-7; major cell-wall type, meso-diaminopimelic acid; major cellular fatty acids, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C15 : 0; major polar lipids, phosphatidylglycerol and diphosphatidylglycerol; DNA G+C content, 46.3 mol%) also supported the affiliation of strain MJ3T with the genus Salimicrobium . Therefore, strain MJ3T represents a novel species of the genus Salimicrobium , for which the name Salimicrobium jeotgali sp. nov. is proposed. The type strain is MJ3T ( = KACC 16972T = JCM 19758T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1133-1137 ◽  
Author(s):  
Yuan-Yuan Bao ◽  
Zhi Huang ◽  
Dong-Mei Mao ◽  
Xia-Fang Sheng ◽  
Lin-Yan He

A novel actinomycete, designated strain A31T, was isolated from the surface of weathered biotite in Susong, Anhui Province, China. The organism grew optimally at 30 °C, at pH 8.0 and with 1 % (w/v) NaCl. Strain A31T had A3α as the cell-wall peptidoglycan type and galactose, mannose and rhamnose as whole-cell sugars. Anteiso-C15 : 0 and anteiso-C17 : 0 were the major cellular fatty acids and MK-9(H2) was the predominant respiratory quinone. In addition, the total polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylmonomethylethanolamine and four glycolipids. The genomic DNA G+C content of strain A31T was 70.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A31T was related most closely to Sinomonas albida LC13T (98.3 % similarity), Sinomonas atrocyanea DSM 20127T (98.2 %), Sinomonas soli CW 59T (98.1 %), Sinomonas flava CW 108T (97.8 %), ‘Sinomonas mesophila’ MPKL 26 (97.3 %), Sinomonas echigonensis LC10T (97.1 %) and ‘ Sinomonas notoginsengisoli ’ SYP-B575 (96.7 %). DNA–DNA hybridization studies with the new isolate showed relatedness values of 16.0–56.6 % with its six closest neighbours. Based on phenotypic, chemotaxonomic and phylogenetic analysis, strain A31T represents a novel species of the genus Sinomonas , for which the name Sinomonas susongensis sp. nov. is proposed. The type strain is A31T ( = DSM 28245T = CCTCC AB 2014068T).


Author(s):  
Yan Wu ◽  
Chun Tao Gu

In the present study, the taxonomic positions of five strains (C, 17-2, LMG 10779T, LMG 18969 and LMG 11483) of Leuconostoc pseudomesenteroides were re-evaluated by a polyphasic approach, including the analyses of 16S rRNA, pheS and rpoA gene sequences, cellular fatty acids, average nucleotide and amino acid identities (ANI and AAI), digital DNA–DNA hybridization (dDDH), and phenotypic features. Based on rpoA sequence analysis, the five strains and L. pseudomesenteroides LMG 11482T were divided into two groups: strains C, LMG 10779T and LMG 18969; strains 17-2, LMG 11483 and LMG 11482T. Each of the two groups had almost identical rpoA sequences. The rpoA sequence similarity between strain LMG 10779T and L. pseudomesenteroides LMG 11482T was 95.6 %. Strains LMG 11483 and 17-2 had 98.1 and 97.2 % ANI values, 83.5 and 73.2 % dDDH values, and a 97.0 % AAI value with L. pseudomesenteroides LMG 11482T, greater than the threshold for species demarcation, indicating that strains LMG 11483 and 17-2 belong to L. pseudomesenteroides . Strains LMG 18969 and C shared 97.1 and 98.2 % ANI values, 73.4 and 83.2 % dDDH values, and 96.9 and 96.6 % AAI values with strain LMG 10779T, greater than the threshold for species demarcation, indicating that strains LMG 10779T, LMG 18969 and C represent the same species. The ANI, dDDH and AAI values between strain LMG 10779T and the type strains of phylogenetically related species were 75.2–92.5, 20.0–48.2 and 75.3–93.9 %, respectively, below the thresholds for species demarcation, indicating that strain LMG 10779T represents a novel species within the genus Leuconostoc . On the basis of the results presented here, (i) strains 17-2 and LMG 11483 belong to L. pseudomesenteroides , and (ii) strains LMG 10779T, LMG 18969 and C are considered to represent a novel species within the genus Leuconostoc , for which the name Leuconostoc falkenbergense sp. nov. is proposed with the type strain LMG 10779T (=CCUG 27119T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 458-463 ◽  
Author(s):  
Sonia R. Vartoukian ◽  
Julia Downes ◽  
Richard M. Palmer ◽  
William G. Wade

SGP1T, a strain belonging to a lineage of the phylum Synergistetes with no previously cultivated representatives was subjected to a comprehensive range of phenotypic and genotypic tests. For good growth the strain was dependent on co-culture with, or extracts from, selected other oral bacteria. Cells of strain SGP1T were asaccharolytic and major amounts of acetic acid and moderate amounts of propionic acid were produced as end products of metabolism in peptone-yeast extract-glucose broth supplemented with a filtered cell sonicate of Fusobacterium nucleatum subsp. nucleatum ATCC 25586T (25 %, v/v). Hydrogen sulphide was produced and gelatin was weakly hydrolysed. The major cellular fatty acids were C14 : 0, C18 : 0 and C16 : 0. The DNA G+C content of strain SGP1T was 63 mol%. Phylogenetic analysis of the full-length 16S rRNA gene showed that strain SGP1T represented a novel group within the phylum Synergistetes . A novel species in a new genus, Fretibacterium fastidiosum gen. nov., sp. nov., is proposed. The type strain of Fretibacterium fastidiosum is SGP1T ( = DSM 25557T = JCM 16858T).


Author(s):  
Yuxin Chen ◽  
Arisa Nishihara ◽  
Takao Iino ◽  
Moriya Ohkuma ◽  
Shin Haruta

A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31–91.10 %), average amino acid identity (91.45–92.10 %) and <70 % digital DNA–DNA hybridization value (41.8–44.2 %) with the three related species of the genus Caldicellulosiruptor . Strain YA01T grew at 50–78 °C (optimum, 70 °C) and at pH 5.0–9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).


Author(s):  
Jingling Liang ◽  
Sai Wang ◽  
Ayizekeranmu Yiming ◽  
Luoyi Fu ◽  
Iftikhar Ahmad ◽  
...  

Strain L22-9T, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a Pseudomonas species. Multilocus sequence analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences showed that strain L22-9T formed a clearly separated branch, located in a cluster together with Pseudomonas brassicacearum LMG 21623T, Pseudomonas kilonensis DSM 13647T and Pseudomonas thivervalensis DSM 13194T. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) confirmed that strain L22-9T should be classified as a novel species. It was most closely related to P. kilonensis DSM 13647T with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9T from P. kilonensis DSM 13647T are the assimilation ability of N-acetyl-d-glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and d-fucose. The predominant cellular fatty acids of strain L22-9T are C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9T represents a novel species, for which the name Pseudomonas bijieensis sp. nov. is proposed. The type strain is L22-9T (=CGMCC 1.18528T=LMG 31948T), with a DNA G+C content of 60.85 mol%.


Author(s):  
Silvio Hering ◽  
Moritz K. Jansson ◽  
Michael E. J. Buhl

A novel species within the genus Eikenella is described, based on the phenotypical, biochemical and genetic characterization of a strain of a facultatively anaerobic, Gram-negative rod-shaped bacterium. Strain S3360T was isolated from the throat swab of a patient sampled during routine care at a hospital. Phylogenetic analyses (full-length 16S rRNA gene and whole-genome sequences) placed the strain in the genus Eikenella , separate from all recognized species but with the closest relationship to Eikenella longinqua (NML 02-A-017T). Eikenella is one of the genera in the HACEK group known to be responsible for rare cases of endocarditis in humans. Until the recent descriptions of Eikenella exigua , Eikenella halliae and Eikenella longinqua , Eikenella corrodens had been the only validly published species in this genus since its description as Bacteroides corrodens in 1958. Unlike these species, strain S3360T is able to metabolize carbohydrates (glucose). The average nucleotide identities of strain S3360T with E. longinqua (NML 02-A-017T) and E. corrodens (NCTC 10596T), the type species of the genus, were 90.5 and 84.7 %, respectively, and the corresponding genome-to-genome distance values were 41.3 and 29.0 %, respectively. The DNA G+C content of strain S3360T was 58.4 mol%. Based on the phenotypical, biochemical and genetic findings, strain S3360T is considered to represent a novel species within the genus Eikenella , for which the name Eikenella glucosivorans sp. nov. is proposed. The type strain is S3360T (DSM 110714T=CCOS 1935T=CCUG 74293T). In addition, an emendation of the genus Eikenella is proposed to include species which are saccharolytic.


Sign in / Sign up

Export Citation Format

Share Document