Lacibacterium aquatile gen. nov., sp. nov., a new member of the family Rhodospirillaceae isolated from a freshwater lake

2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4797-4804 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Yi-Ling Chen ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen

A bacterial strain designated LTC-2T was isolated from a freshwater lake in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain LTC-2T were Gram-reaction-negative, facultatively anaerobic, poly-β-hydroxybutyrate-accumulating, motile by means of a monopolar flagellum, non-spore-forming, slightly curved rods surrounded by a thick capsule and formed creamy white colonies. Growth occurred at 10–37 °C (optimum, 20–30 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and with 0–1.0 % NaCl (optimum, 0 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major isoprenoid quinone was Q-10 and the DNA G+C content was 58.5 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, two uncharacterized phospholipids and two uncharacterized aminophospholipids. The major polyamines were putrescine, homospermidine and spermidine. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain LTC-2T forms a distinct lineage with respect to closely related genera in the family Rhodospirillaceae , most closely related to the genera Elstera and Dongia , and the levels of 16S rRNA gene sequence similarity with respect to the type species of related genera were less than 94 %. On the basis of the genotypic and phenotypic data, strain LTC-2T represents a novel genus and species of the family Rhodospirillaceae , for which the name Lacibacterium aquatile gen. nov., sp. nov. is proposed. The type strain is LTC-2T ( = BCRC 80445T = LMG 26999T = KCTC 32017T).

2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1086-1091 ◽  
Author(s):  
Wen-Ming Chen ◽  
Shwu-Harn Yang ◽  
Wei-Cheng Huang ◽  
Chih-Yu Cheng ◽  
Shih-Yi Sheu

A facultatively anaerobic, chitinolytic bacterium, strain KL-9T, was isolated from a freshwater lake in Taiwan and characterized by using a polyphasic taxonomic approach. Cells of strain KL-9T were Gram-negative, rod-shaped, motile by means of a single polar flagellum and non-spore-forming. Growth occurred at 15–40 °C (optimum, 30–37 °C), at pH 7.0–9.0 (optimum, pH 8.0) and with 0–1.0 % NaCl (optimum, 0 %). The predominant fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major isoprenoid quinone was Q-8. The DNA G+C content of strain KL-9T was 64.6 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and several uncharacterized phospholipids and aminolipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KL-9T formed a distinct lineage with respect to closely related genera within the class Betaproteobacteria , being most closely related to members of the genera Leeia , Chitinimonas , Silvimonas and Andreprevotia . Levels of 16S rRNA gene sequence similarity with respect to the type strains of type species of these genera were below 91 %. On the basis of genotypic and phenotypic data, strain KL-9T is thus considered to represent a novel species of a new genus within the class Betaproteobacteria , for which the name Chitinivorax tropicus gen. nov., sp. nov. is proposed. The type strain of Chitinivorax tropicus is KL-9T ( = BCRC 80168T = LMG 25530T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3145-3153 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Tzu-Ying Chen ◽  
Wen-Ming Chen

A bacterial strain designated CAR-16T was isolated from a freshwater lake in Taiwan and characterized using the polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, motile by gliding, rod-shaped and formed rose-colored colonies. Optimal growth occurred at 30 °C, pH 7 and with 0 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that CAR-16T represented a member of the family Cytophagaceae and formed a phylogenetic lineage in the genus Aquirufa . CAR-16T was most closely related to Aquirufa nivalisilvae 59G-WUEMPELT with a 99.7 % 16S rRNA gene sequence similarity. CAR-16T showed 71.2–79.5 % average nucleotide identity and 17.8–21.7 % digital DNA–DNA hybridization identity with the strains of other species of the genus Aquirufa . The major fatty acids of strain CAR-16T were iso-C15 : 0, iso-C15 : 0 3-OH, C16 : 1ω5c and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c and/or iso-C15 : 0 2-OH). The polar lipid profile consisted of a mixture of phosphatidylethanolamine and several uncharacterized aminophospholipids, phospholipids and lipids. The major isoprenoid quinone was MK-7. The genomic DNA G+C content of CAR-16T was 38.8 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, CAR-16T should be classified as representing a novel species of the genus Aquirufa , for which the name Aquirufa rosea sp. nov. is proposed. The type strain is CAR-16T (=BCRC 81153T=LMG 30923T=KCTC 62869T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2497-2502 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Zih-Han Chen ◽  
Chiu-Chung Young ◽  
Wen-Ming Chen

A bacterial strain, designated KBP-21T, was isolated from a water sample taken from the Banping Lake Wetland Park in Taiwan and characterized in a taxonomic study using a polyphasic approach. Cells of strain KBP-21T were Gram-stain-negative, facultatively anaerobic, poly-β-hydroxybutyrate-accumulating, motile rods that formed yellow colonies. Growth occurred at 15–40 °C (optimum, 30 °C), at pH 5.0–8.0 (optimum, pH 8.0) and with 0–2 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KBP-21T belonged to the genus Paludibacterium within the family Neisseriaceae of the class Betaproteobacteria and the closest related neighbour was Paludibacterium yongneupense 5YN8-15T with a 16S rRNA gene sequence similarity value of 96.4 %. Strain KBP-21T contained summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c as the predominant fatty acids. The major respiratory quinone was Q-8. The DNA G+C content of the genomic DNA was 62.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized aminophospholipid and several uncharacterized phospholipids. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain KBP-21T represents a novel species in the genus Paludibacterium , for which the name Paludibacterium paludis sp. nov. is proposed. The type strain is KBP-21T ( = BCRC 80514T = LMG 27230T = KCTC 32182T).


Author(s):  
Chih-Horng Kuo ◽  
Pin-Yun Huang ◽  
Shih-Yi Sheu ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
...  

A novel bacterial strain, designated IPMB12T, isolated from the gut of the superworm Zophobas morio in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, facultatively anaerobic, non-motile, coccoid or rod-shaped and formed translucent colonies. Optimal growth occurred at 25–37 °C, pH 9–10, and with 0–2 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain IPMB12T is affiliated with genus in the the family Orbaceae in the class Gammaproteobacteria . Strain IPMB12T was most closely related to Gilliamella mensalis LMG 29880T with a 94.6 % 16S rRNA gene sequence similarity. Strain IPMB12T showed less than 71.6 % average nucleotide identity, less than 71.5 % average amino acid identity and less than 21.2 % digital DNA–DNA hybridization identity compared to the strains of related genera within the family Orbaceae . The major fatty acids of strain IPMB12T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized phosphoaminoglycolipid and one uncharacterized aminophospholipid. The major isoprenoid quinone was Q-8. Genomic DNA G+C content of strain IPMB12T was 39.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain IPMB12T represents a novel species of a new genus in the family Orbaceae , for which the name Zophobihabitans entericus gen. nov., sp. nov. is proposed. The type strain is IPMB12T (=BCRC 80908T =LMG 32079T=KCTC 82347T=KACC 22323T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 539-544 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and rod-shaped bacterial strain, designated HWR-17T, was isolated from seawater of the Yellow Sea in Korea. Strain HWR-17T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HWR-17T clustered with the two Mariniflexile species in the family Flavobacteriaceae, exhibiting 16S rRNA gene sequence similarity of 97.1–97.2 % to their type strains and less than 95.7 % sequence similarity to other members of the family Flavobacteriaceae. Strain HWR-17T contained MK-6 as the predominant menaquinone and iso-C15 : 0 as the major fatty acid. The polar lipid profile of strain HWR-17T contained phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. The DNA G+C content of strain HWR-17T was 35.7 mol% and it exhibited 11 and 10 % DNA–DNA relatedness, respectively, with Mariniflexile gromovii KCTC 12570T and Mariniflexile fucanivorans DSM 18792T. The phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain HWR-17T is distinguishable from the two recognized Mariniflexile species. On the basis of the data presented, strain HWR-17T is considered to represent a novel species of the genus Mariniflexile, for which the name Mariniflexile aquimaris sp. nov. is proposed. The type strain is HWR-17T ( = KCTC 23346T  = CCUG 60529T). An emended description of the genus Mariniflexile is also proposed.


2020 ◽  
Vol 70 (12) ◽  
pp. 6408-6413 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel facultatively anaerobic, nitrate-reducing bacterium, designated MeG22T, was isolated from a freshwater lake in Japan. Cells of the strain were straight rods (0.8×2.5–10 µm), motile, and Gram-stain-negative. For growth, the optimum NaCl concentration was 0 % and the optimum temperature was 30 °C. Under anoxic conditions, strain MeG22T reduced nitrate to nitrite. Major cellular fatty acids were C15 : 1 ω6c (13.6 %), C17 : 0 (11.9 %), anteiso-C15 : 0 (10.6 %) and iso-C15 : 0 (10.6 %). The major respiratory quinone was menaquinone-7. The genome sequence of strain MeG22T consists of 5 712 279 bp with a G+C content of 40.3 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Prolixibacteraceae within the phylum Bacteroidetes . The closest relative of strain MeG22T was Sunxiuqinia faeciviva strain JAM-BA0302T with a 16S rRNA gene sequence similarity of 90.9 %. On the basis of phylogenetic and phenotypic characterization, Aquipluma nitroreducens, gen. nov., sp. nov., belonging to the family Prolixibacteraceae is proposed with the type strain MeG22T (=NBRC 112896T=DSM 106262T).


Author(s):  
Rui Yin ◽  
Yan-Jun Yi ◽  
Zhuo Chen ◽  
Guan-Jun Chen ◽  
Yan-Xia Zhou ◽  
...  

A Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15T, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15T represents a distinct line of the family Flavobacteriaceae . Strain Dm15T had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Arcticiflavibacter luteus (96.7 %) and 93.7–96.4 % sequence similarity to other phylogenetic neighbours ( Bizionia paragorgiae , Winogradskyella thalassocola , Ichthyenterobacterium magnum , Psychroserpens burtonensis and Arcticiflavibacter luteus ) in the family Flavobacteriaceae . The novel isolate was able to grow at 10–40 °C (optimum, 30–33 °C), pH 7.0–9.0 (optimum, pH 7.0–7.5) and with 0.5–6.0 % NaCl (optimum 2.0–3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 431 bp and 34.1mol% G+C content. Especially, there were some specific genes coding for cellulase and alginate lyase, which provided a basis for the above phenotypic characteristics. The strain's genome sequence showed 71.1–80.2 % average amino acid identity values and 71.8–77.7 % average nucleotide identity values compared to the type strains of related genera within the family Flavobacteriaceae . It shared digital DNA–DNA hybridization identity of 19.8 and 20.9 % with I. magnum and A. luteus , respectively. The sole menaquinone was MK-6. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids included six unidentified polar lipids, four unidentified aminolipids and phosphatidylethanolamine. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain Dm15T represents a novel species of a new genus in the family Flavobacteriaceae , phylum Bacteroidetes , for which the name Flavihalobacter algicola gen. nov., sp. nov. is proposed. The type strain is Dm15T (KCTC 42256T=CICC 23815T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3444-3450 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Yu-Wen Shiau ◽  
Wen-Ming Chen

A Gram-stain negative, rod-shaped, non-motile, non-spore-forming and aerobic bacterial strain, designated HL-25T, was isolated and characterized in a taxonomic study using a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences showed that the isolate constituted a distinct branch within the genus Sphingobium , showing the highest level of 16S rRNA gene sequence similarity to Sphingobium vulgare HU1-GD12T (96.6 %). The major fatty acids (>10 %) of strain HL-25T were C18 : 1ω7c, C16 : 0, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C18 : 0. The major cellular hydroxy fatty acid was C14 : 0 2-OH. The major isoprenoid quinone was Q-10 and the DNA G+C content was 63.8 mol%. The polar lipid profile consisted of a mixture of sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, diphosphatidylglycerol, an uncharacterized glycolipid, an uncharacterized aminophospholipid and four uncharacterized phospholipids. The polyamine pattern of strain HL-25T contained spermidine and putrescine. On the basis of these genotypic, chemotaxonomic and phenotypic data, strain HL-25T represents a novel species in the genus Sphingobium , for which the name Sphingobium sufflavum sp. nov. is proposed. The type strain is HL-25T ( = BCRC 80413T = KCTC 23953T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4562-4567 ◽  
Author(s):  
Xiao-Mei Zhang ◽  
Jie He ◽  
Dao-Feng Zhang ◽  
Wei Chen ◽  
Zhao Jiang ◽  
...  

A novel Gram-stain-positive bacterium, designated strain YIM M11385T, was isolated from a marine sediment sample collected from the South Bay, Little Andaman Island, India with a salinity of 35 p.p.m., pH 8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M11385T belongs to the genus Marininema , supported by a bootstrap value of 100 %. The taxonomic position of this organism was further established by using a polyphasic approach. Strain YIM M11385T grew optimally at 28 °C, pH 7.0 and in the presence of 0–5 % (w/v) NaCl. The 16S rRNA gene sequence similarity between strain YIM M11385T and Marininema mesophilum SCSIO 10219T was 98.3 %. Strain YIM M11385T exhibited a quinone system with only MK-7, the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major components, and the major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The level of DNA–DNA relatedness between strain YIM M11385T and M. mesophilum SCSIO 10219T was 59.36 %. On the basis of genotypic and phenotypic data, it is apparent that strain YIM M11385T represents a novel species of the genus Marininema , for which the name Marininema halotolerans sp. nov. is proposed. The type strain is YIM M11385T ( = CCTCC AB 2012052T = DSM 45789T). In addition, we propose that the description of the genus Marininema should be further emended based on the results of the present study.


Sign in / Sign up

Export Citation Format

Share Document