Luteimonas abyssi sp. nov., isolated from deep-sea sediment

2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 668-674 ◽  
Author(s):  
Xiaoyang Fan ◽  
Tong Yu ◽  
Zhao Li ◽  
Xiao-Hua Zhang

Three Gram-stain-negative, strictly aerobic, rod-shaped with single polar flagellum, yellow-pigmented bacteria, designated strains XH031T, XH038-3 and XH80-1, were isolated from deep-sea sediment of the South Pacific Gyre (41° 51′ S 153° 6′ W) during the Integrated Ocean Drilling Program (IODP) Expedition 329. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates belonged to the genus Luteimonas and showed the highest 16S rRNA gene sequence similarity with Luteimonas aestuarii B9T (96.95 %), Luteimonas huabeiensis HB2T (96.93 %) and Xanthomonas cucurbitae LMG 690T (96.92 %). The DNA G+C contents of the three isolates were 70.2–73.9 mol%. The major fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C11 : 0 and C16 : 010-methyl and/or iso-C17 : 1ω9c. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unknown phospholipid. On the basis of data from polyphasic analysis, the three isolates represent a novel species of the genus Luteimonas , for which the name Luteimonas abyssi sp. nov. is proposed. The type strain is XH031T ( = DSM 25880T = CGMCC 1.12611T).

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 703-708 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A novel bacterium, designated strain F051-1T, isolated from a seawater sample collected from the coast at Damupo beach in Pohang, Korea, was investigated in a polyphasic taxonomic study. Cells were yellow-pigmented, strictly aerobic, Gram-staining-negative and rod-shaped. The temperature, pH and NaCl ranges for growth were 4–30 °C, pH 6.0–9.0 and 1.0–6.0 % (w/v), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F051-1T belongs to the genus Psychroserpens in the family Flavobacteriaceae . Its closest relatives were Psychroserpens burtonensis ACAM 188T (96.8 % 16S rRNA gene sequence similarity) and Psychroserpens mesophilus KOPRI 13649T (95.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and anteiso-C15 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and eight unidentified lipids. The major respiratory quinone was menaquinone-6 and the genomic DNA G+C content of the strain was 33.5 mol%. On the basis of phenotypic, phylogenetic and genotypic data, strain F051-1T represents a novel species within the genus Psychroserpens , for which the name Psychroserpens damuponensis sp. nov. is proposed. The type strain is F051-1T ( = KCTC 23539T  = JCM 17632T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1173-1178 ◽  
Author(s):  
Qiliang Lai ◽  
Xiupian Liu ◽  
Fenqing Sun ◽  
Zongze Shao

A Gram-staining negative, aerobic, oval-shaped bacterium, designated strain PTG4-2T, was isolated from deep-sea sediment of the Indian Ocean. Growth was observed with 1–9 % (w/v) NaCl with optimal growth with 3 %, at pH 6.0–10.0 with an optimum of pH 7.0, and at 4–40 °C with an optimum of 30 °C. Positive for catalase and oxidase. The results of a 16S rRNA gene sequence comparison indicated that PTG4-2T was most closely related to Acuticoccus yangtzensis JL1095T (97.3 %), followed by Acuticoccus kandeliae J103T (96.5 %), all other species shared <93 % sequence similarity. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that PTG4-2T forms a distinct lineage within the genus Acuticoccus , and revealed that the genus Acuticoccus forms a novel family-level clade in the order Rhizobiales . The ANI and the DNA–DNA hybridization estimate values between PTG4-2T and two type strains (A. yangtzensis JL1095T and A. kandeliae J103T) were 79.9–76.2 % and 23.1–20.8 %, respectively. PTG4-2T contained Q-10 as the predominant ubiquinone. The principal fatty acids (>5 %) were summed feature 8 [C18 : 1 ω7c/ω6c (72.2 %)], C18 : 0 (8.4 %), C20 : 1 ω7c (6.4 %) and C16 : 0 (6.3 %). The polar lipids consisted of phosphatidylglycerol, three unidentified phospholipids, two unidentified glycolipids, one unidentified aminolipid and one unknown lipid. The DNA G+C content of PTG4-2T is 69.2 mol%. On the basis of the polyphasic taxonomic evidence presented in this study, PTG4-2T should be classified as representing a novel species of the genus Acuticoccus , for which the name Acuticoccus sediminis sp. nov. is proposed, with the type strain PTG4-2T (=MCCC 1A01274T=KCTC 52323T). In addition, a novel family, Acuticoccaceae fam. nov., is proposed to accommodate the genus Acuticoccus .


Author(s):  
Lei Song ◽  
Hongcan Liu ◽  
Ying Huang ◽  
Xin Dai ◽  
Yuguang Zhou

A Gram-stain-negative, rod-shaped bacterial strain, designated SW123T, was isolated from a deep-sea water sample collected from the Indian Ocean. Strain SW123T was strictly aerobic, catalase- and oxidase-positive. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 and summed feature 9 (comprising C16 : 0-methyl or iso-C17 : 1 ω9c). Ubiquinone-8 was the sole respiratory quinone. The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA G+C content was 49.4 mol%. 16S rRNA gene sequence analysis showed that strain SW123T was closely related to Aliidiomarina shirensis AIST (96.7 % sequence similarity), Aliidiomarina iranensis GBPy7T (96.3%), Aliidiomarina haloalkalitolerans AK5T (96.0%) and Aliidiomarina celeris F3105T (95.9%). Phylogenetic trees based on 16S rRNA gene sequences showed that strain SW123T represented a novel member of the genus Aliidiomarina , forming a distinct cluster with A. celeris F3105T. On the basis of phylogenetic inference and phenotypic characteristics, we propose that strain SW123T represents a novel species of the genus Aliidiomarina , with the name Aliidiomarina indica sp. nov. The type strain is SW123T (=CGMCC1.16169T=KCTC 82234T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1850-1856 ◽  
Author(s):  
Herbert Seiler ◽  
Anne Bleicher ◽  
Hans-Jürgen Busse ◽  
Josef Hüfner ◽  
Siegfried Scherer

A novel halophilic, Gram-reaction-negative, strictly aerobic, non-motile, rod-shaped and oxidase- and catalase-positive bacterial strain, designated WCC 4520T, was isolated from a semi-hard, Raclette-type cheese. The colonies were yellow–orange; flexirubin-type pigments were not found. The strain hydrolysed gelatin, hippurate, tyrosine and Tweens 20 and 80. Optimal growth was observed with 6–8 % (w/v) NaCl, at pH 7–8 and at 27–30 °C. The genomic DNA G+C content was 33.6 mol%. In phylogenetic analysis based on 16S rRNA gene sequences, strain WCC 4520T appeared to be a member of the family Flavobacteriaceae and the closest phylogenetic neighbours were identified as Psychroflexus gondwanensis DSM 5423T (94.0 % 16S rRNA gene sequence similarity) and Psychroflexus salinarum CCUG 56752T (94.0 %). The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The only detected quinone was MK-6 and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and an unidentified polar lipid. Minor polar lipids and traces of polyamines were also detected. On the basis of the data presented, strain WCC 4520T represents a novel species of the genus Psychroflexus , for which the name Psychroflexus halocasei sp. nov. is proposed. The type strain is WCC 4520T ( = LMG 25857T = CCUG 59705T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4124-4129 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Ilse Cleenwerck ◽  
Natalia V. Zhukova ◽  
Seung Bum Kim ◽  
Paul de Vos

A strictly aerobic, Gram-stain-negative, rod-shaped, non-motile and yellow-pigmented bacterial strain, designated KMM 6208T, was isolated from a sea urchin. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that this novel isolate was affiliated to the class Gammaproteobacteria and formed a robust cluster with Arenicella xantha KMM 3895T with 98.2 % 16S rRNA gene sequence similarity. Strain KMM 6208T grew in the presence of 0.5–5 % NaCl and at a temperature range of 4–38 °C. The isolate was oxidase-positive and hydrolysed aesculin, casein, chitin, gelatin, starch and Tweens 40 and 80. The prevalent fatty acids of strain KMM 6208T were C16 : 1ω7c, iso-C16 : 0, iso-C18 : 0, C18 : 1ω7c and C16 : 0. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified aminophospholipid, and the major isoprenoid quinone was Q-8. The DNA G+C content of strain KMM 6208T was 46.3 mol%. The DNA–DNA relatedness value of strain KMM 6208T with Arenicella xantha KMM 3895T was 5 %. Molecular data in a combination with phenotypic findings strongly suggest inclusion of this novel strain in the genus Arenicella as a representative of a novel species for which the name Arenicella chitinivorans sp. nov. is proposed. The type strain is KMM 6208T ( = KCTC 12711T = LMG 26983T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1665-1672 ◽  
Author(s):  
Youhei Fukui ◽  
Mahiko Abe ◽  
Masahiro Kobayashi ◽  
Hiroaki Saito ◽  
Hiroshi Oikawa ◽  
...  

Three Gram-negative, non-motile, strictly aerobic strains, designated LNM-20T, LCM-1 and LAM-13, were isolated from thalli of the marine red alga Porphyra yezoensis. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates were associated with the genus Polaribacter in the family Flavobacteriaceae and were most closely related to Polaribacter dokdonensis DSW-5T (96.2 % 16S rRNA gene sequence similarity) and Polaribacter gangjinensis K17-16T (95.0 %). The DNA G+C content of the isolates was 28.6–29.2 mol%. DNA–DNA hybridization analysis showed that the isolates belonged to a single species distinct from both of their closest relatives. The only isoprenoid quinone detected was menaquinone-6. The main polar lipids were phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids. The major fatty acids were iso-C15 : 0, iso-C15 : 1ω10c and iso-C15 : 0 3-OH. The phenotypic features of strain LNM-20T differed from those of their closest relatives in several regards (colony colour, growth with 1 % NaCl and on TSA plus 2.5 % NaCl, hydrolysis of Tweens 40 and 80, and oxidization of five carbon compounds). On the basis of phylogenetic, chemotaxonomic and phenotypic analysis, the isolates represent a novel species in the genus Polaribacter , for which the name Polaribacter porphyrae sp. nov. is proposed. The type strain is LNM-20T ( = LMG 26671T  = NBRC 108759T). Emended descriptions of the genus Polaribacter and P. dokdonensis and P. gangjinensis are also proposed.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1278-1283 ◽  
Author(s):  
Cong Yu ◽  
Shaolan Yu ◽  
Zenghu Zhang ◽  
Zhao Li ◽  
Xiao-Hua Zhang

A moderately halophilic bacterial strain, designated XH204T, was isolated from deep-sea sediment core (45° 58′ S 163° 11′ W) of the South Pacific Gyre during the Integrated Ocean Drilling Program Expedition 329. The strain was Gram-stain-positive, rod-shaped, motile by peritrichous flagella and produced ellipsoidal endospores subterminally positioned within swollen sporangia. Growth of strain XH204T occurred at 15–42 °C (optimum 37 °C), in the presence of 0–14 % (w/v) NaCl (optimum 4 %) and at pH 7.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XH204T belonged to the genus Oceanobacillus and showed the highest sequence similarity to Oceanobacillus profundus CL-MP28T (95.6 %); strain XH204T exhibited 93.4 % 16S rRNA gene sequence similarity to the type strain of the type species of the genus Oceanobacillus , Oceanobacillus iheyensis HTE831T. The dominant fatty acids of strain XH204T were anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. The cell wall of strain XH204T contained meso-diaminopimelic acid as the diagnostic diamino acid, and ribose, glucose and galactose as the major whole-cell sugars. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Menaquinone-7 (MK-7) was the only isoprenoid quinone and the DNA G+C content was 38.8 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic analysis, strain XH204T represents a novel species of the genus Oceanobacillus , for which the name Oceanobacillus pacificus sp. nov. is proposed. The type strain is XH204T ( = DSM 25873T = JCM 18381T).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1265-1270 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Sangyong Lim ◽  
Minho Joe ◽  
Myungjin Lee

A Gram-stain-positive, strictly aerobic, spherical, non-motile red-pigmented bacterial strain, designated MJ27T, was isolated from a sludge sample of the Daejeon sewage disposal plant in South Korea. A polyphasic approach was used to study the taxonomic position of strain MJ27T. Strain MJ27T shared highest 16S rRNA gene sequence similarity with Deinococcus grandis DSM 3963T (98.8 %), Deinococcus caeni Ho-08T (97.5 %) and Deinococcus aquaticus PB314T (96.6 %.); levels of sequence similarity with the type strains of other Deinococcus species were less than 96.0 %. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ27T belonged to the clade formed by members of the genus Deinococcus in the family Deinococcaceae . The G+C content of the genomic DNA of strain MJ27T was 67.6 mol%. The chemotaxonomic characteristics of strain MJ27T were typical of members of the genus Deinococcus , with MK-8 as the predominant respiratory quinone, C16 : 1ω7c, C15 : 1ω6c, C16 : 0 and C15 : 0 as major fatty acids (>12 %), ornithine as the diamino acid in the cell-wall peptidoglycan and resistance to gamma radiation [D10 (dose required to reduce the bacterial population by tenfold) >9 kGy]. The low levels of DNA–DNA relatedness reported here (5.3±1.5–29.2±2.3 %) indicate that strain MJ27T represents a species that is separate from its closest relatives in the genus Deinococcus . On the basis of phylogenetic inference, fatty acid profile and other phenotypic properties, strain MJ27T is considered to represent a novel species of the genus Deinococcus , for which the name Deinococcus daejeonensis sp. nov. is proposed. The type strain is MJ27T ( = KCTC 13751T = JCM 16918T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 648-653 ◽  
Author(s):  
Hyeonji Kang ◽  
Veeraya Weerawongwiwat ◽  
Min Young Jung ◽  
Soon Chul Myung ◽  
Wonyong Kim

A Gram-stain-negative, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated CAU 1002T, was isolated from a tidal flat sediment and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1002T grew optimally at 30 °C and pH 7.5. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1002T formed a distinct lineage within the genus Algoriphagus and was most closely related to Algoriphagus lutimaris KCTC 22630T and Algoriphagus halophilus KCTC 12051T (97.75 and 97.74 % 16S rRNA gene sequence similarity, respectively). The strain contained MK-7 as the major isoprenoid quinone and iso-C15 : 0 and C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3) as the major fatty acids. The cell-wall peptidoglycan of strain CAU 1002T contained meso-diaminopimelic acids. The major whole-cell sugars were glucose, arabinose, sucrose, and ribose. The polar lipid profile was composed of phosphatidylethanolamine, five unidentified aminolipids, one unidentified aminophospholipid, one unidentified phospholipid, one unidentified aminoglycolipid, one unidentified glycolipid and twelve unidentified lipids. The DNA G+C content of strain CAU 1002T was 38.0 mol%. On the basis of phylogenetic inference, phenotypic, chemotaxonomic and genotypic data, strain CAU 1002T should be classified into the genus Algoriphagus as a member of a novel species, for which the name Algoriphagus chungangensis sp. nov. is proposed. The type strain is CAU 1002T ( = KCTC 23759T = CCUG 61890T). The description of the genus Algoriphagus is emended.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 755-760 ◽  
Author(s):  
Dong-Heon Lee ◽  
Jae Seoun Hur ◽  
Hyung-Yeel Kahng

A strictly aerobic, Gram-stain-negative bacterium, designated strain No.6T, was isolated from a lichen (Cladonia sp.) collected in Geogeum Island, Korea, and its taxonomic status was established by a polyphasic study. Cells of strain No.6T were non-motile, catalase- and oxidase-positive, non-spore-forming rods. Growth was observed at 15–35 °C (optimum, 25–30 °C), at pH 5.0–10.0 (optimum, pH 6.0–8.0) and with 0–3 % NaCl (optimum, 0–2 %). The predominant cellular fatty acids were summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, 41.5 %), iso-C15 : 0 (26.7 %) and C16 : 0 (9.6 %), and menaquinone MK-7 was the only respiratory quinone. The G+C content of the genomic DNA of strain No.6T was 36.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain No.6T fell within the evolutionary group encompassed by the genus Sphingobacterium . Levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized Sphingobacterium species ranged from 92.1 to 99.1 %, the highest values being with Sphingobacterium siyangense SY1T (99.1 %) and Sphingobacterium multivorum IAM 14316T (98.5 %). DNA–DNA relatedness between strain No.6T and these two type strains were 32.0 and 5.7 %, respectively. The polar lipids found in strain No.6T were phosphatidylethanolamine, two unidentified phospholipids, three unidentified aminophospholipids, one glycolipid and four unidentified lipids. One unidentified sphingolipid was also found. On the basis of phenotypic and genotypic data, strain No.6T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium cladoniae sp. nov. is proposed. The type strain is No.6T ( = KCTC 22613T = JCM 16113T). An emended description of Sphingobacterium siyangense is also proposed.


Sign in / Sign up

Export Citation Format

Share Document