scholarly journals Acetobacter lambici sp. nov., isolated from fermenting lambic beer

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1083-1089 ◽  
Author(s):  
Freek Spitaels ◽  
Leilei Li ◽  
Anneleen Wieme ◽  
Tom Balzarini ◽  
Ilse Cleenwerck ◽  
...  

An acetic acid bacterium, strain LMG 27439T, was isolated from fermenting lambic beer. The cells were Gram-stain-negative, motile rods, catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene sequence revealed the strain was closely related to Acetobacter okinawensis (99.7 % 16S rRNA gene sequence similarity with the type strain of this species), A. ghanensis (99.6 %), A. syzygii (99.6 %), A. fabarum (99.4 %) and A. lovaniensis (99.2 %). DNA–DNA hybridization with the type strains of these species revealed moderate DNA–DNA hybridization values (31–45 %). Strain LMG 27439T was unable to grow on glycerol or methanol as the sole carbon source, on yeast extract with 10 % ethanol or on glucose-yeast extract medium at 37 °C. It did not produce acid from l-arabinose, d-galactose or d-mannose, nor did it produce 2-keto-d-gluconic acid, 5-keto-d-gluconic acid or 2,5-diketo-d-gluconic acid from d-glucose. It did not grow on ammonium as the sole nitrogen source and ethanol as the sole carbon source. These genotypic and phenotypic data distinguished strain LMG 27439T from established species of the genus Acetobacter , and therefore we propose this strain represents a novel species of the genus Acetobacter . The name Acetobacter lambici sp. nov. is proposed, with LMG 27439T ( = DSM 27328T) as the type strain.

2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1117-1120 ◽  
Author(s):  
P. Kämpfer ◽  
H. C. Scholz ◽  
N. Lodders ◽  
I. Loncaric ◽  
A. M. Whatmore ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium, isolated from placental tissue of a cow, was investigated for its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain UK34/07-5T was shown to belong to the class Alphaproteobacteria , closely related to the type strain of Camelimonas lactis (96.0 % sequence similarity). The polyamine pattern showed the major compound spermidine and moderate amounts of putrescine. The major quinone was ubiquinone Q-10. The polar lipid profile was composed of the major compounds phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine and moderate amounts of diphosphatidylglycerol, three unidentified aminolipids and an unidentified phospholipid. The profile of major fatty acids, consisting of C19 : 0 cyclo ω8c and C18 : 1ω7c, with C18 : 0 3-OH as the hydroxylated fatty acid, was very similar to that of C. lactis M 2040T. The results of DNA–DNA hybridization and physiological and biochemical tests allowed both genotypic and phenotypic differentiation of the isolate from C. lactis . The relatively low 16S rRNA gene sequence similarity of 96.0 % to C. lactis M 2040T and marked differences in the polar lipid profiles as well as the results of physiological tests and the DNA–DNA hybridization data support the creation of a novel species, for which the name Camelimonas abortus sp. nov. is proposed, with the type strain UK34/07-5T ( = CIP 110303T  = CCUG 61094T  = DSM 24741T  = CCM 7941T).


Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
Dominique Clermont ◽  
Alexis Criscuolo ◽  
...  

A Gram-stain-positive, aerobic, endospore-forming bacterial strain, isolated from the rhizosphere of Zea mays, was studied for its detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-447T was shown to be a member of the genus Paenibacillus , most closely related to the type strain of Paenibacillus solanacearum (97.8 %). The 16S rRNA gene sequence similarity values to all other Paenibacillus species were below 97.0 %. DNA–DNA hybridization (DDH) values with the type strain of P. solanacearum were 35.9 % (reciprocal 27%), respectively. The average nucleotide identity and in silico DDH values with the type strain of P. solanacearum were 84.86 and 28.9 %, respectively. The quinone system of strain JJ-447T consisted exclusively of menaquinones and the major component was MK-7 (96.4 %) but minor amounts of MK–6 (3.6 %) were detected as well. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminolipid. Major fatty acids were iso- and anteiso-branched with the major compounds anteiso-C15 : 0 and iso-C15 : 0. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-447T from the most closely related species on the basis of d-glucose, l-arabinose and d-mannose assimilation and other physiological tests. Thus, JJ-447T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus allorhizosphaerae sp. nov. is proposed, with JJ-447T (=LMG 31601T=CCM 9021T=CIP 111802T) as the type strain.


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1866-1875 ◽  
Author(s):  
Katharina J. Huber ◽  
Pia K. Wüst ◽  
Manfred Rohde ◽  
Jörg Overmann ◽  
Bärbel U. Foesel

Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4HT and Ac_23_E3T were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4HT and Ac_23_E3T were aerobic mesophiles with a broad range of tolerance towards pH (4.0–9.5 and 3.5–10.0, respectively) and temperature (15–44 and 12–47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4HT and Ac_23_E3T were iso-C15 : 0, summed feature 1 (C13 : 0 3-OH/iso-C15 : 1 H), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and anteiso-C17 : 0. The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4HT and Ac_23_E3T were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16T, with 16S rRNA gene sequence identity of 93.2 and 93.3 %, respectively. Strains A22_HD_4HT and Ac_23_E3T displayed 16S rRNA gene sequence similarity of 97.4 % to each other. On the basis of the low DNA–DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4HT = DSM 26555T = LMG 27985T) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3T = DSM 26558T = LMG 27597T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2322-2329 ◽  
Author(s):  
Ismet Ara ◽  
Baljinova Tsetseg ◽  
Damdinsuren Daram ◽  
Manabu Suto ◽  
Katsuhiko Ando

A Gram-reaction-positive aerobic actinomycete, designated strain MN08-A0118T, which produced short chains of non-motile spores on the tips of long sporophores and formed yellow–brown colonies with branched substrate mycelium, was studied in detail to determine its taxonomic position. On the basis of 16S rRNA gene sequence analyses, strain MN08-A0118T was grouped into the genus Herbidospora , being most closely related to Streptosporangium claviforme (98.2 %), Herbidospora osyris (98.2 %), Herbidospora daliensis (98.2 %), Herbidospora cretacea (97.9 %) and Herbidospora yilanensis (97.4 %). Chemotaxonomic data supported allocation of the strain to the genus Herbidospora . MK-10(H4) was the predominant menaquinone with minor amounts of MK-10(H6), MK-10(H2) and MK-9(H4); the fatty acid profile contained major amounts of iso-C16 : 0, C17 : 0 10-methyl, iso-C14 : 0 and iso-C16 : 0 2-OH; the phospholipid profile contained phosphatidylethanolamine, phosphatidylmethylethanolamine and glucosamine-containing phospholipids; and the whole-cell sugars included ribose, glucose, galactose, madurose and rhamnose (trace). The phylogenetic data, phenotypic and genotypic properties and DNA–DNA hybridization differentiated this strain from its closely related strains, S. claviforme (35–54 % DNA–DNA relatedness), H. osyris (39–51 %), H. daliensis (3–16 %), H. cretacea (34–39 %) and H. yilanensis (34–42 %). Thus, MN08-A0118T represents a novel species of the genus Herbidospora , for which the name Herbidospora mongoliensis sp. nov. is proposed, with MN08-A0118T ( = NBRC 105882T  = VTCC D9-22T) as the type strain. In addition, DNA–DNA hybridization results showed that S. claviforme and H. osyris are synonyms of H. cretacea .


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1488-1494 ◽  
Author(s):  
Daichi Fujii ◽  
Fumiko Nagai ◽  
Yohei Watanabe ◽  
Yukio Shirasawa

Two Gram-staining-negative, strictly aerobic, non-endospore-forming, non-motile, rod-shaped bacteria, designated strains YIT 12745T and YIT 12746T, were isolated from sludge from a wastewater treatment plant. 16S rRNA gene sequence analyses indicated that these strains belonged to the genus Flavobacterium . In these analyses, strains YIT 12745T and YIT 12746T were most closely related to the type strains of Flavobacterium caeni and Flavobacterium terrigena , with 16S rRNA gene sequence similarity values of 94.9 % and 96.2 %, respectively. For both novel strains, menaquinone (MK-6) was the only respiratory quinone. The major fatty acids of strain YIT 12745T were iso-C15 : 1 G (14.4 %), iso-C16 : 0 (13.2 %), C15 : 0 (12.9 %), iso-C15 : 0 (12.9 %) and iso-C17 : 0 3-OH (11.5 %). Those of strain YIT 12746T were iso-C15 : 0 (21.5 %), iso-C16 : 0 (13.3 %), C15 : 0 (12.0 %) and iso-C15 : 1 G (11.9 %). The genomic DNA G+C contents of strains YIT 12745T and YIT 12746T were 48.7 and 30.9 mol%, respectively. From their differential phenotypic and phylogenetic characteristics, these strains are considered to represent two novel species of the genus Flavobacterium , for which the names Flavobacterium longum sp. nov. (type strain YIT 12745T = JCM 19141T = DSM 27077T) and Flavobacterium urocaniciphilum sp. nov. (type strain YIT 12746T = JCM 19142T = DSM 27078T) are proposed. Emended descriptions of Flavobacterium caeni and Flavobacterium terrigena are also proposed.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1342-1349 ◽  
Author(s):  
Mareike Jogler ◽  
Hong Chen ◽  
Julia Simon ◽  
Manfred Rohde ◽  
Hans-Jürgen Busse ◽  
...  

A previously undescribed aerobic, non-sporulating bacterium, strain G1A_585T, was isolated from an oligotrophic freshwater lake in Bavaria, Germany. The rod-shaped cells were Gram-stain-negative and non-motile. Based on 16S rRNA gene sequence similarity, strain G1A_585T was a member of the family Sphingomonadaceae and shared <95.2 % similarity with type strains of all members of the most closely related genus, Sphingopyxis . Phyogenetically, the isolate shared a root with strains of three marine species, Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T. The polar lipids of strain G1A_585T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, sphingoglycolipids, three glycolipids and one unknown lipid. Ubiquinone-10 was the dominant quinone (93.1 %) and ubiquinone-9 (6.5 %) was also detected. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 38.2 %); C16 : 1ω7c (33.6 %) and C14 : 0 2-OH (17.8 %). The major polyamine was spermidine and traces of 1,3-diaminopropane, putrescine and spermine were also detected. The DNA G+C content of strain G1A_585T was 55.7 mol% and the isolate was oxidase- and catalase-positive. Based on the phylogenetic relationship, the low DNA G+C content compared with most other members of the genus Sphingopyxis and the presence of signature nucleotides in the 16S rRNA gene sequence, a novel species in a new genus and species, Sphingorhabdus planktonica gen. nov., sp. nov., is proposed; the type strain of Sphingorhabdus planktonica is G1A_585T ( = DSM 25081T  = LMG 26646T). Because Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T form a phylogenetic group together with strain G1A_585T that is clearly separated from all other known Sphingopyxis strains and share signature nucleotides, these three Sphingopyxis strains are reclassified as members of the proposed novel genus Sphingorhabdus: Sphingorhabdus flavimaris comb. nov. (type strain SW-151T = DSM 16223T = KCTC 12232T), Sphingorhabdus marina comb. nov. (type strain FR1087T = DSM 22363T = IMSNU 14132T = KCTC 12763T = JCM 14161T) and Sphingorhabdus litoris comb. nov. (type strain FR1093T = DSM 22379T = IMSNU 14133T = KCTC 12764T = JCM 14162T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1403-1410 ◽  
Author(s):  
Yun-Hee Jang ◽  
Soo-Jin Kim ◽  
Tomohiko Tamura ◽  
Moriyuki Hamada ◽  
Hang-Yeon Weon ◽  
...  

A Gram-stain-positive, non-motile rod, designated strain SGM3-12T, was isolated from paddy soil in Suwon, Republic of Korea. 16S rRNA gene sequence analysis revealed that the strain represented a novel member of the family Microbacteriaceae . The nearest phylogenetic neighbour was Leifsonia kribbensis MSL-13T (97.4 % 16S rRNA gene sequence similarity). Strain SGM3-12T and Leifsonia kribbensis MSL-13T formed a distinct cluster within the family Microbacteriaceae . Strain SGM3-12T contained MK-12(H2) and MK-11(H2) as the predominant menaquinones with moderate amounts of MK-12 and MK-11; anteiso-C15 : 0 and iso-C16 : 0 as the major cellular fatty acids (>10 % of total); and diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids as the polar lipids. The peptidoglycan type of the isolate was B1δ with l-Lys as the diagnostic cell-wall diamino acid. On the basis of these results, strain SGM3-12T represents a novel species within a new genus, for which the name Lysinimonas soli gen. nov., sp. nov. is proposed (the type strain of the type species is SGM3-12T = KACC 13362T = NBRC 107106T). It is also proposed that Leifsonia kribbensis be transferred to this genus as Lysinimonas kribbensis comb. nov. (the type strain is MSL-13T = DSM 19272T = JCM 16015T = KACC 21108T = KCTC 19267T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 208-211 ◽  
Author(s):  
Lourdes Martínez-Aguilar ◽  
Jesús Caballero-Mellado ◽  
Paulina Estrada-de los Santos

Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26T and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus . The comparison showed that strain TE26T was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA–DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26T is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA–DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26T ( = LMG 26411T  = DSM 15562T  = CIP 108892T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1166-1172 ◽  
Author(s):  
Yong-Fu Li ◽  
John N. Calley ◽  
Philip J. Ebert ◽  
Emily Bulian Helmes

A novel bacterial strain, CMG1240T, was isolated in 1988 from mixed soil samples collected from the United States and South America in a selective enrichment medium with guar gum as the sole carbon source. This microbial isolate showed β-mannanolytic activity to hydrolyse the galactomannans present in guar gum. Strain CMG1240T was aerobic, Gram-stain-variable, non-motile, rod-shaped and endospore-forming. It was further examined based on a combination of phenotypic, physiological and genetic characterization. On the basis of 16S rRNA gene sequence similarity, cellular lipid profile and fatty acid composition, strain CMG1240T was shown to belong unequivocally to the genus Paenibacillus . Quinone analysis showed that MK-7 was the only menaquinone detected. The main cell-wall sugar was xylose with trace amounts of mannose and glucose. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unknown glycolipids, phospholipids, phosphoglycolipids and other lipids. The peptidoglycan structure was A1γ (meso-diaminopimelic acid-direct). The major fatty acids were anteiso-C15 : 0 and C16 : 0. The DNA G+C content was 46 mol% as determined experimentally and by analysis of the genomic sequence. The 16S rRNA gene sequence of strain CMG1240T shared highest similarity with that of Paenibacillus fonticola ZLT (97.6 %) while all other tested Paenibacillus strains showed lower sequence similarities (≤95.3 %). The results of DNA–DNA hybridization and chemotaxonomic tests enabled the genotypic and phenotypic differentiation of strain CMG1240T from P. fonticola . Based on these results, strain CMG1240T ( = ATCC BAA-2594T = DSM 25539T) should be designated the type strain of a novel species within the genus Paenibacillus , for which the name Paenibacillus lentus sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document