phospholipid profile
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Litwin ◽  
Przemysław Bernat ◽  
Monika Nowak ◽  
Mirosława Słaba ◽  
Sylwia Różalska

AbstractPyrethroids are chemical insecticides that are widely used to control pests. Entomopathogenic fungi are considered environmentally safe alternatives to these compounds. Pyrethroids and entomopathogenic fungi not only co-exist in the environment but can also be applied together in pest control. They are often found in contact with each other, and thus, it seems important to understand their interactions at the cellular level. In this study, we analyzed whether pyrethroids could influence the phospholipid profile of Beauveria bassiana and whether membrane changes are one of the mechanisms by which these fungi adapt to unfavorable environmental conditions. The results of our study revealed that pyrethroids changed the phospholipid profile and increased the cell membrane permeability of B. bassiana, which enabled them to enter and accumulate within the fungal cells, resulting in oxidative stress. Pyrethroids influenced the amount of neutral lipids, caused a decrease in sodium content, and also temporarily lowered the level of the secondary metabolite oosporein in the studied fungi. These findings indicate that the effect of pyrethroids on entomopathogenic fungi may be more complex than originally thought and that lipidomic studies can aid in fully understanding the influence of these chemicals on the mentioned group of fungi.


2021 ◽  
Vol 22 (16) ◽  
pp. 8700
Author(s):  
Wojciech Łuczaj ◽  
Anna Jastrząb ◽  
Maria do Rosário Domingues ◽  
Pedro Domingues ◽  
Elżbieta Skrzydlewska

Chronic UV radiation causes oxidative stress and inflammation of skin and blood cells. Therefore, in this study, we assessed the effects of cannabidiol (CBD), a natural phytocannabinoid with antioxidant and anti-inflammatory properties, on the phospholipid (PL) and ceramide (CER) profiles in the plasma of nude rats irradiated with UVA/UVB and treated topically with CBD. The results obtained showed that UVA/UVB radiation increased the levels of phosphatidylcholines, lysophospholipids, and eicosanoids (PGE2, TxB2), while downregulation of sphingomyelins led to an increase in CER[NS] and CER[NDS]. Topical application of CBD to the skin of control rats significantly upregulated plasma ether-linked phosphatidylethanolamines (PEo) and ceramides. However, CBD administered to rats irradiated with UVA/UVB promoted further upregulation of CER and PEo and led to significant downregulation of lysophospholipids. This was accompanied by the anti-inflammatory effect of CBD, manifested by a reduction in the levels of proinflammatory PGE2 and TxB2 and a dramatic increase in the level of anti-inflammatory LPXA4. It can therefore be suggested that topical application of CBD to the skin of rats exposed to UVA/UVB radiation prevents changes in plasma phospholipid profile resulting in a reduction of inflammation by reducing the level of LPE and LPC species and increasing antioxidant capacity due to upregulation of PEo species.


2021 ◽  
Author(s):  
Yifan Bao ◽  
Immanuel Stricker ◽  
Mohammed Salim ◽  
Sofie Zehentner ◽  
Veronika Somoza ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 4003
Author(s):  
Caroline Le Sénéchal ◽  
Mathilde Puges ◽  
Christophe Barthe ◽  
Patricia Costaglioli ◽  
Caroline Tokarski ◽  
...  

Bacteria form multicellular and resistant structures named biofilms. Biofilm formation starts with the attachment phase, and the molecular actors involved in this phase, except adhesins, are poorly characterized. There is growing evidence that phospholipids are more than simple structural bricks. They are involved in bacterial adaptive physiology, but little is known about their role in biofilm formation. Here, we report a mass spectrometry analysis of the phospholipid (PL) profile of several strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. The aim of our study was to evaluate a possible link between the PL profile of a strain and its attachment phenotype. Our results showed that PL profile is strongly strain-dependent. The PL profile of P. aeruginosa PAO1, a collection strain, was different from those of 10 clinical isolates characterized either by a very low or a very high attachment capacity. We observed also that the clinical strain’s PL profiles varied even more importantly between isolates. By comparing groups of strains having similar attachment capacities, we identified one PL, PE 18:1-18:1, as a potential molecular actor involved in attachment, the first step in biofilm formation. This PL represents a possible target in the fight against biofilms.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1178
Author(s):  
Wojciech Łuczaj ◽  
Maria do Rosário Domingues ◽  
Pedro Domingues ◽  
Elżbieta Skrzydlewska

UV radiation is a well-established environmental risk factor known to cause oxidative stress and disrupt the metabolism of keratinocyte phospholipids. Cannabidiol (CBD) is a phytocannabinoid with anti-inflammatory and antioxidant effects. In this study, we examined changes in the keratinocyte phospholipid profile from nude rat skin exposed to UVA and UVB radiation that was also treated topically with CBD. UVA and UVB radiation promoted up-regulation of phosphatidylcholines (PC), lysophosphatidylcholines (LPC), phosphatidylethanolamines (PE) and down-regulation of sphingomyelin (SM) levels and enhanced the activity of phospholipase A2 (PLA2) and sphingomyelinase (SMase). Application of CBD to the skin of control rats led to down-regulation of SM and up-regulation of SMase activity. After CBD treatment of rats irradiated with UVA or UVB, SM was up-regulated and down-regulated, respectively, while ceramide (CER) levels and SMase activity were down-regulated and up-regulated, respectively. CBD applied to the skin of UV-irradiated rats down-regulated LPC, up-regulated PE and phosphatidylserines (PS) and reduced PLA2 activity. In conclusion, up-regulation of PS may suggest that CBD inhibits their oxidative modification, while changes in the content of PE and SM may indicate a role of CBD in promoting autophagy and improving the status of the transepidermal barrier.


2020 ◽  
Vol 21 (18) ◽  
pp. 6592
Author(s):  
Wojciech Łuczaj ◽  
Izabela Dobrzyńska ◽  
Adam Wroński ◽  
M Rosário Domingues ◽  
Pedro Domingues ◽  
...  

UVB phototherapy is treatment for psoriasis, which increases phospholipid oxidative modifications in the cell membrane of the skin. Therefore, we carried out lipidomic analysis on the keratinocytes of healthy individuals and patients with psoriasis irradiated with UVB and treated with cannabidiol (CBD), phytocannabinoid with antioxidant and anti-inflammatory properties. Our results showed that, in psoriatic keratinocytes phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), and ether-linked phosphoethanolamine (PEo), were downregulated, while SM (d41:2) was upregulated. These changes were accompanied by an increase in negative zeta potential, which indicates translocation of PS to the outer layer of the membrane. CBD treatment of psoriatic keratinocytes led to downregulation of PC, PS, and upregulation of certain PEo and an SM species, SM (d42:2), and the zeta potential. However, UVB irradiation of psoriatic keratinocytes resulted in upregulation of PC, PC plasmalogens (PCp), PEo, and a decrease in the negative zeta potential. The exposure of UVB-irradiated cells to CBD led to a decrease in the level of SM (d42:2). Our results suggest that CBD induces pro-apoptotic mechanisms in psoriatic keratinocytes while simultaneously improving the antioxidant properties and preventing the loss of transepidermal water of keratinocytes of patients irradiated with UVB. Thus, CBD has potential therapeutic value in the treatment of psoriasis.


Author(s):  
Angélica María Sabogal-Guáqueta ◽  
Julián David Arias-Londoño ◽  
Johanna Gutierrez-Vargas ◽  
D. Sepulveda-Falla ◽  
M. Glatzel ◽  
...  

2020 ◽  
Vol 70 (5) ◽  
pp. 3226-3233 ◽  
Author(s):  
Hao Jiang ◽  
Liyuan Han ◽  
Jingjing Li ◽  
Mingying Yu ◽  
Junwei Zhao ◽  
...  

A novel actinomycete, designated strain NEAU-C151T, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Analysis of the 16S rRNA gene sequence indicated that strain NEAU-C151T belongs to the genus Streptomyces and exhibited 97.5, 97.4 and 97.4 % similarities to Streptomyces lincolnensis NRRL 2936T, Streptomyces coacervatus AS-0823T, and Streptomyces longisporus ISP 5166T, respectively. The assignment of strain NEAU-C151T to the genus Streptomyces was confirmed by chemotaxonomic data: anteiso-C15 : 0, C16 : 0, iso-C16 : 0, C16 : 1 (ω7c) and anteiso-C17 : 0 as the major cellular fatty acids; whole-cell sugars contained ribose and glucose; phospholipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), unidentified phospholipid (PL), unidentified lipids (L) and phosphatidylinositol mannoside (PIM); the menaquinones were MK-9(H4), MK-9(H6), MK-10(H2) and MK-9(H8). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA–DNA relatedness and phenotypic data showed that strain NEAU-C151T could be distinguished from its closest relatives. Consequently, strain NEAU-C151T represents a novel species of the genus Streptomyces , for which the name Streptomyces montanus sp. nov. is proposed. The type strain is NEAU-C151T (=CGMCC 4.7498T=DSM 107808T).


Sign in / Sign up

Export Citation Format

Share Document