scholarly journals Halopolyspora alba gen. nov., sp. nov., isolated from sediment

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2775-2780 ◽  
Author(s):  
Hangxian Lai ◽  
Xiaomin Wei ◽  
Yingying Jiang ◽  
Xiu Chen ◽  
Qinyuan Li ◽  
...  

A novel halophilic, filamentous actinomycete, designated strain AFM 10251T, was isolated from a sediment sample collected from the Dead Sea, Israel. The isolate grew with 10–35 % multi-salts, and did not grow without NaCl or MgCl2. The isolate formed a white aerial mycelium, and long chains of arthrospores with more than 10 spores per chain. The spores were spherical or oval with warty surfaces, and sterile mycelium was present between individual spores. The isolate contained meso-diaminopimelic acid and a small proportion of ll-diaminopimelic acid as cell-wall diamino acids, and galactose and arabinose as whole-cell sugars. The major menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and three unknown phospholipids. Major fatty acids were iso-C16 : 0, iso-C17 : 0, iso-C15 : 0 and anteiso-C17 : 0. The DNA G+C content of strain AFM 10251T was 66.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain AFM 10251T and the genus Actinopolyspora formed a distinct lineage. Analysis of the secondary structures of variable areas of the 16S rRNA gene showed that strain AFM 10251T was different from all recognized species of the genus Actinopolyspora and members of the family Pseudonocardiaceae . Analysis of the signature nucleotides of the 16S rRNA gene showed that strain AFM 10251T and Actinopolyspora halophila formed a single group, but with base pair differences at positions 127 : 234 and 183 : 194. On the basis of analysis of chemical and molecular characteristics, strain AFM 10251T is considered to represent a novel species of a new genus in the family Actinopolysporaceae , for which the name Halopolyspora alba gen. nov., sp. nov. is proposed. The type strain of Halopolyspora alba is AFM 10251T ( = DSM 45976T = CGMCC 4.7114T).

2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2813-2818 ◽  
Author(s):  
Zhan-Feng Xia ◽  
Tong-Wei Guan ◽  
Ji-Sheng Ruan ◽  
Ying Huang ◽  
Li-Li Zhang

A novel filamentous actinomycete strain, designated TRM 46004T, was isolated from sediment of Aiding Lake in Tulufan Basin (42° 64′ N 89° 26′ E), north-west China. The isolate was characterized using a polyphasic approach. The isolate formed abundant aerial mycelium with few branches and vegetative mycelium, occasionally twisted and coiled; spherical sporangia containing one to several spherical spores developed at the ends of short sporangiophores on aerial mycelium. The G+C content of the DNA was 65.2 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid and xylose, galactose and ribose as the major whole-cell sugars. The diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H10). The major fatty acids were iso-C16 : 0 and anteiso-C17 : 0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TRM 46004T formed a distinct lineage within the family Pseudonocardiaceae and showed 91.7–96.1 % 16S rRNA gene sequence similarity with members of the family Pseudonocardiaceae . On the basis of the evidence from this polyphasic study, a novel genus and species, Longimycelium tulufanense gen. nov., sp. nov., are proposed. The type strain of Longimycelium tulufanense is TRM 46004T ( = CGMCC 4.5737T = NBRC 107726T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5503-5511 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Susanne Verbarg ◽  
Yochan Joung

Two Gram-stain-positive, strictly aerobic, non-spore-forming actinobacterial strains, designated YC2-7T and YC5-17, were isolated from the Yongcheondonggul (larva cave) in Jeju, Republic of Korea and their taxonomic ranks were examined by a polyphasic approach. The 16S rRNA gene tree showed that the novel isolates occupied an independent position separated from recognized genera of the family Nocardiaceae . In the 92 core gene-based phylogenomic analysis, strain YC2-7T was loosely associated with the type strain of Aldersonia kummingensis with 66.2 % average amino acid identity. The 16S rRNA gene sequence simairity between the isolate and members of the family Nocardiaceae was below 96.7 %. The cell-wall peptidoglycan was meso-diaminopimelic acid as a diagnostic diamino acid. Whole-cell sugars consisted of arabinose, galactose and glucose. The predominant menaquinone was MK-8(H4, ω-cycl). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The cellular fatty acids consisted mainly of saturated and unsaturated components with small amounts of tuberculostearic acid. Mycolic acids of 52–58 carbon atoms were present. The DNA G+C content of the genome was 63.8 mol%. On the basis of combination of morphological and chemotaxonomic differences, in addition to phylogenetic distinctness, the novel isolates are considered to constitute members of a novel species of a new genus in the family Nocardiaceae , for which the name Antrihabitans stalactiti gen. nov., sp. nov. is proposed. The type strain is YC2-7T (=KACC 19965T=DSM 108733T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 206-213 ◽  
Author(s):  
Lin Guo ◽  
Li Tuo ◽  
Xugela Habden ◽  
Yuqin Zhang ◽  
Jiameng Liu ◽  
...  

A novel actinomycete, designated strain CA15-2T, was isolated from a soil sample collected from the rhizosphere of tamarisk in the Lop Nor region, Xinjiang, China, and was characterized by using a polyphasic taxonomic approach. Optimal growth occurred at 37 °C and pH 7.5–8.0 and with 5 % (w/v) NaCl. Strain CA15-2T formed white to pale-yellow branched substrate mycelium without fragmentation and sparse aerial mycelium with wavelike curves. Whole-cell hydrolysates of the isolate contained meso-diaminopimelic acid as the diagnostic diamino acid of the cell wall but no diagnostic sugars. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid and other unidentified lipids. MK-9(H8), MK-10(H8) and MK-10(H6) were the predominant menaquinones. The major fatty acids were iso-C16 : 0 and C16 : 0. The G+C content of the genomic DNA was 69.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CA15-2T formed a distinct subclade in the family Nocardiopsaceae , with less than 95 % 16S rRNA gene sequence similarity to all known members of the family Nocardiopsaceae . On the basis of the evidence from our polyphasic study, a novel genus, Allosalinactinospora gen. nov., is proposed, with the type species Allosalinactinospora lopnorensis gen. nov., sp. nov. The type strain of Allosalinactinospora lopnorensis is strain CA15-2T ( = DSM 45697T = CGMCC 4.7074T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Kai Chen ◽  
Shu-Kun Tang ◽  
Guang-Li Wang ◽  
Guo-Xing Nie ◽  
Qin-Fen Li ◽  
...  

Bacterial strain 14-2AT, isolated from a long-term DDT-contaminated soil in China, was characterized by using a polyphasic approach to clarify its taxonomic position. Strain 14-2AT was found to be Gram-negative, aerobic, non-spore-forming, non-motile, non-flagellated and rod-shaped. The new isolate was able to grow at 4–42 °C, pH 6.0–9.0 and with 0–5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the family Sphingobacteriaceae . The 16S rRNA gene sequence of strain 14-2AT showed the highest similarity with Olivibacter oleidegradans TBF2/20.2T (99.4 %), followed by Pseudosphingobacterium domesticum DC-186T (93.8 %), Olivibacter ginsengisoli Gsoil 060T (93.6 %), Olivibacter terrae Jip13T (93.1 %), Olivibacter soli Gsoil 034T (92.8 %) and Olivibacter sitiensis AW-6T (89.6 %). The DNA–DNA hybridization value between strains 14-2AT and O. oleidegradans TBF2/20.2T was 34.45±2.11 %. Strain 14-2AT contained phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminophospholipid and phosphatidylinositol mannoside as the major polar lipids. The DNA G+C content was 41.2 mol%. MK-7 is the major isoprenoid quinone. Summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH are the major fatty acids. The phenotypic and chemotaxonomic data confirmed the affiliation of strain 14-2AT to the genus Olivibacter . On the basis of the phylogenetic and phenotypic characteristics, and chemotaxonomic data, strain 14-2AT is considered to represent a novel species of the genus Olivibacter , for which the name Olivibacter jilunii sp. nov. is proposed; the type strain is 14-2AT ( = KCTC 23098T = CCTCC AB 2010105T).


Author(s):  
Di Liu ◽  
Qin Xiong ◽  
Juanjuan Zhao ◽  
Zhenjuan Fang ◽  
Guishan Zhang

A Gram-stain-negative, ovoid or rod-shaped, non-flagellated, motile-by-gliding and aerobic bacteria, designated S10-8T, was isolated from marine sediment of the Yellow Sea. Colonies of strain S10-8T had a pink-red pigmentation and its cells were approximately 0.5–0.8 μm×1.0–2.5 μm in size. Growth occurred at 10–45 °C (optimally at 33–37 °C), in the presence of 0–12.0 % NaCl (optimally at 2.0–5.0 %, w/v) and at pH 5.0–8.5 (optimally at pH 7.0–7.5). Phylogenetic analysis of the 16S rRNA gene indicated that strain S10-8T is a member of the genus Pontibacter within the family Hymenobacteraceae , and the 16S rRNA gene sequence similarity of strain S10-8T to its closest relative Pontibacter actiniarum KCTC 12367T was 96.9 %. Strain S10-8T contained MK-7 as the predominant menaquinone and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B) and iso-C15:0 as the major fatty acids. The major polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The size of the draft genome was 4 623 791 bp and the G+C content was 53.5 mol%. There were low DNA-DNA hybridization values (<48.3±5.2 %) and average nucleotide identity values (<86.5 %) between strain S10-8T and the most closely related recognized Pontibacter species. Therefore, we propose a novel species in the genus Pontibacter to accommodate the novel isolate: Pontibacter flavimaris sp. nov. (type strain S10-8T=KCTC 42769T=ACCC 19859T).


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1021-1026 ◽  
Author(s):  
A. Makhdoumi-Kakhki ◽  
M. A. Amoozegar ◽  
M. Bagheri ◽  
M. Ramezani ◽  
A. Ventosa

Strain EB21T was isolated from a brine sample from Aran-Bidgol salt lake, a saline playa in Iran. Strain EB21T was an orange–red-pigmented, motile rod and required at least 2 M NaCl but not MgCl2 for growth. Optimal growth was achieved at 3.5 M NaCl and 0.2 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, while it was able to grow at pH 6.0–8.0 and 25–55 °C. Analysis of the 16S rRNA gene sequence revealed that strain EB21T is a member of the family Halobacteriaceae , showing low levels of similarity to other members of the family. The highest sequence similarities, 91.8, 91.7 and 91.5 %, were obtained with the 16S rRNA gene sequences of the type strains of Halobiforma lacisalsi , Haloterrigena thermotolerans and Halalkalicoccus tibetensis , respectively. Polar lipid analyses revealed that strain EB21T contains phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Three unidentified glycolipids and one minor phospholipid were also observed. The only quinone present was MK-8(II-H2). The G+C content of its DNA was 67.7 mol%. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain EB21T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae , order Halobacteriales , for which the name Haloarchaeobius iranensis gen. nov., sp. nov. is proposed. The type strain of Haloarchaeobius iranensis is EB21T ( = IBRC-M 10013T  = KCTC 4048T).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2841-2848 ◽  
Author(s):  
Marcelo Bertazzo ◽  
Maria del Carmen Montero-Calasanz ◽  
Manuel Martinez-Garcia ◽  
Cathrin Spröer ◽  
Peter Schumann ◽  
...  

A Gram-reaction-positive bacterial isolate, designated Tü 6233T, with rudimentary, coral-pink vegetative mycelium that formed neither aerial mycelium nor spores, was isolated from a Brazilian soil sample. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus . Cell-wall hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid and galactose as the diagnostic sugar. The major fatty acids were iso-C16 : 0, iso-C15 : 0 and C17 : 1ω8c and the predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol, an unknown glycophospholipid and an unknown phospholipid. The DNA G+C content of the strain was 75.4 mol%. The 16S rRNA gene sequence identity with members of the genus Geodermatophilus was 94.2–98.7 %. Based on phenotypic, chemotaxonomic and phylogenetic data, strain Tü 6233T is proposed to represent a novel species, Geodermatophilus brasiliensis sp. nov., with the type strain Tü 6233T ( = DSM 44526T = CECT 8402T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5373-5381 ◽  
Author(s):  
Shu-ge Wu ◽  
Jing-jing Wang ◽  
Jia-ning Wang ◽  
Qi Chen ◽  
Zong-jun Du ◽  
...  

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacterium, designated CWB-1T, was isolated from a haloalkaline lake sediment sample collected from the bottom of Chaiwopu Lake, Urumchi, Xinjiang Province, PR China. Strain CWB-1T grew at 4–40 °C (optimum, 30–35 °C), pH 6.5–9.0 (optimum, pH 6.5–7.0) and with 0.5–5.5 % (w/v) NaCl (optimum, 2.5–3.0 %). Phylogenetic analyses based on the 16S rRNA gene sequence and the whole genome sequence both revealed that strain CWB-1T belonged to the family Flavobacteriaceae . The strain had the highest similarity of the 16S rRNA gene sequence to Psychroserpens jangbogonensis PAMC 27130T (92.8 %). The genome of strain CWB-1T was 3 548 011 bp long with 36.3 % DNA G+C content. The predominant fatty acids (>10 %) in the CWB-1T cells were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 1 (iso-C15 : 1 H/C13 : 0 3-OH). The major respiratory quinone was menaquinone-6 and the major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and two unidentified lipids. Based on the phylogenetic analyses, as well as the phenotypic characteristics, a novel genus and species of the family Flavobacteriaceae , Paucihalobacter ruber gen. nov., sp. nov., is proposed. The type strain is CWB-1T (=KCTC 72450T=CGMCC 1.17149T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2424-2430 ◽  
Author(s):  
Kristin Mühldorfer ◽  
Stephanie Speck ◽  
Gudrun Wibbelt

Five bacterial strains isolated from bats of the family Vespertilionidae were characterized by phenotypic tests and multilocus sequence analysis (MLSA) using the 16S rRNA gene and four housekeeping genes (rpoA, rpoB, infB, recN). Phylogenetic analyses of individual and combined datasets indicated that the five strains represent a monophyletic cluster within the family Pasteurellaceae . Comparison of 16S rRNA gene sequences demonstrated a high degree of similarity (98.3–99.9 %) among the group of bat-derived strains, while searches in nucleotide databases indicated less than 96 % sequence similarity to known members of the Pasteurellaceae . The housekeeping genes rpoA, rpoB, infB and recN provided higher resolution compared with the 16S rRNA gene and subdivided the group according to the bat species from which the strains were isolated. Three strains derived from noctule bats shared 98.6–100 % sequence similarity in all four genes investigated, whereas, based on rpoB, infB and recN gene sequences, 91.8–96 % similarity was observed with and between the remaining two strains isolated from a serotine bat and a pipistrelle bat, respectively. Genome relatedness as deduced from recN gene sequences correlated well with the results of MLSA and indicated that the five strains represent a new genus. Based on these results, it is proposed to classify the five strains derived from bats within Vespertiliibacter pulmonis gen. nov., sp. nov. (the type species), Vespertiliibacter genomospecies 1 and Vespertiliibacter genomospecies 2. The genus can be distinguished phenotypically from recognized genera of the Pasteurellaceae by at least three characteristics. All strains are nutritionally fastidious and require a chemically defined supplement with NAD for growth. The DNA G+C content of strain E127/08T is 38.2 mol%. The type strain of Vespertiliibacter pulmonis gen. nov., sp. nov. is E127/08T ( = CCUG 64585T = DSM 27238T). The reference strains of Vespertiliibacter genomospecies 1 and 2 are E145/08 and E157/08, respectively.


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1383-1388 ◽  
Author(s):  
Jie Li ◽  
Guang-Tao Zhang ◽  
Jian Yang ◽  
Xin-Peng Tian ◽  
Fa-Zuo Wang ◽  
...  

A novel filamentous bacterium, strain SCSIO 10219T, was isolated from a sediment sample collected from the South China Sea (113° 3.752′ E 18° 1.722′ N) at a depth of 2105 m. Growth was observed at 25–35 °C (optimum 30 °C) and pH 5.0–8.0 (optimum pH 6.0–7.0). The organism formed yellow–white colonies with radial wrinkles. Aerial mycelium was not produced on any of the growth media tested. Phenotypic characterization and 16S rRNA gene sequence analysis indicated that strain SCSIO 10219T belongs to the family Thermoactinomycetaceae . The strain contained ll-diaminopimelic acid in the cell wall. The predominant menaquinone was MK-7. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and five unknown phospholipids. Major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The DNA G+C content was 46.5 mol%. On the basis of chemotaxonomic properties and phylogenetic analysis based on 16S rRNA gene sequence data, it is proposed that this strain represents a novel species in a new genus, Marininema mesophilum gen. nov., sp. nov., in the family Thermoactinomycetaceae . The type strain of the type species is SCSIO 10219T ( = CCTCC AA 2011006T = DSM 45610T). In addition, we propose that the description of the family Thermoactinomycetaceae should be further emended based on the present study.


Sign in / Sign up

Export Citation Format

Share Document