Olivibacter jilunii sp. nov., isolated from DDT-contaminated soil

2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Kai Chen ◽  
Shu-Kun Tang ◽  
Guang-Li Wang ◽  
Guo-Xing Nie ◽  
Qin-Fen Li ◽  
...  

Bacterial strain 14-2AT, isolated from a long-term DDT-contaminated soil in China, was characterized by using a polyphasic approach to clarify its taxonomic position. Strain 14-2AT was found to be Gram-negative, aerobic, non-spore-forming, non-motile, non-flagellated and rod-shaped. The new isolate was able to grow at 4–42 °C, pH 6.0–9.0 and with 0–5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the family Sphingobacteriaceae . The 16S rRNA gene sequence of strain 14-2AT showed the highest similarity with Olivibacter oleidegradans TBF2/20.2T (99.4 %), followed by Pseudosphingobacterium domesticum DC-186T (93.8 %), Olivibacter ginsengisoli Gsoil 060T (93.6 %), Olivibacter terrae Jip13T (93.1 %), Olivibacter soli Gsoil 034T (92.8 %) and Olivibacter sitiensis AW-6T (89.6 %). The DNA–DNA hybridization value between strains 14-2AT and O. oleidegradans TBF2/20.2T was 34.45±2.11 %. Strain 14-2AT contained phosphatidylethanolamine, phosphatidylmonomethylethanolamine, aminophospholipid and phosphatidylinositol mannoside as the major polar lipids. The DNA G+C content was 41.2 mol%. MK-7 is the major isoprenoid quinone. Summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH are the major fatty acids. The phenotypic and chemotaxonomic data confirmed the affiliation of strain 14-2AT to the genus Olivibacter . On the basis of the phylogenetic and phenotypic characteristics, and chemotaxonomic data, strain 14-2AT is considered to represent a novel species of the genus Olivibacter , for which the name Olivibacter jilunii sp. nov. is proposed; the type strain is 14-2AT ( = KCTC 23098T = CCTCC AB 2010105T).

2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1021-1026 ◽  
Author(s):  
A. Makhdoumi-Kakhki ◽  
M. A. Amoozegar ◽  
M. Bagheri ◽  
M. Ramezani ◽  
A. Ventosa

Strain EB21T was isolated from a brine sample from Aran-Bidgol salt lake, a saline playa in Iran. Strain EB21T was an orange–red-pigmented, motile rod and required at least 2 M NaCl but not MgCl2 for growth. Optimal growth was achieved at 3.5 M NaCl and 0.2 M MgCl2. The optimum pH and temperature for growth were pH 7.5 and 40 °C, while it was able to grow at pH 6.0–8.0 and 25–55 °C. Analysis of the 16S rRNA gene sequence revealed that strain EB21T is a member of the family Halobacteriaceae , showing low levels of similarity to other members of the family. The highest sequence similarities, 91.8, 91.7 and 91.5 %, were obtained with the 16S rRNA gene sequences of the type strains of Halobiforma lacisalsi , Haloterrigena thermotolerans and Halalkalicoccus tibetensis , respectively. Polar lipid analyses revealed that strain EB21T contains phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Three unidentified glycolipids and one minor phospholipid were also observed. The only quinone present was MK-8(II-H2). The G+C content of its DNA was 67.7 mol%. On the basis of the data obtained, the new isolate could not be classified in any recognized genus. Strain EB21T is thus considered to represent a novel species in a new genus within the family Halobacteriaceae , order Halobacteriales , for which the name Haloarchaeobius iranensis gen. nov., sp. nov. is proposed. The type strain of Haloarchaeobius iranensis is EB21T ( = IBRC-M 10013T  = KCTC 4048T).


2020 ◽  
Vol 70 (9) ◽  
pp. 4951-4959 ◽  
Author(s):  
Ziyu Xu ◽  
Mengli Xia ◽  
Yi-Xin Huo ◽  
Yu Yang

A bacterial strain, BIT-B35T, was isolated from the gut of plastic-eating larvae of the Coleoptera insect Zophobas atratus. Its taxonomic position was determined by using a polyphasic approach. Cells were white-pigmented, Gram-stain-negative, motile short rods with terminal flagella. The 16S rRNA gene sequence (1411 bp) of strain BIT-B35T showed highest similarity (98.1%) to Escherichia fergusonii ATCC 35469T and Citrobacter koseri LMG 5519T. The results of phylogenetic analyses, based on the 16S rRNA gene, concatenated sequences of seven housekeeping genes (atpD, gyrB, infB, rpoB, pyrG, fusA and leuS) and genome sequences, placed strain BIT-B35T in a separate lineage among the family of Enterobacteriaceae . The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The genomic DNA G+C content of strain BIT-B35T was 57.1 mol%. The chemotaxonomic data plus results of physiological and biochemical tests also distinguished strain BIT-B35T from members of other genera within the family Enterobacteriaceae . Therefore, strain BIT-B35T is considered to represent a novel species of a novel genus within the family Enterobacteriaceae , for which the name Intestinirhabdus alba gen. nov., sp. nov. is proposed. The type strain is BIT-B35T (=CGMCC 1.17042T=KCTC 72448T).


Author(s):  
Qing Liu ◽  
Lei-Lei Yang ◽  
Hong-Can Liu ◽  
Guo-Qing Zhang ◽  
Yu-Hua Xin

A novel Gram-stain-negative, rod-shaped, yellow bacterium, designated as LB1R16T, was isolated from the Laigu glacier on the Tibetan Plateau, PR China. Strain LB1R16T was catalase-positive, oxidase-negative and grew at 0–28 °C, pH 6.0–8.0 and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LB1R16T belongs to the family Sphingosinicellaceae but formed an independent lineage. The highest level of 16S rRNA gene sequence similarities were found to Polymorphobacter arshaanensis DJ1R-1T (95.24 %), Sphingoaurantiacus capsulatus YLT33T (94.78 %) and Sandarakinorhabdus limnophila DSM 17366T (94.67 %). The genomic DNA G+C content was 68.8 mol%. The main cellular fatty acids were summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c), C16 : 0 and C12 : 0-OH. The respiratory quinone was ubiquinone-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one sphingoglycolipid, one unidentified aminolipid, one unidentified phospholipid and two unidentified polar lipids, which were different from the type strains of Polymorphobacter arshaanensis , Sphingoaurantiacus capsulatus and Sandarakinorhabdus limnophila . Based on a polyphasic approach, a novel species of a new genus, Glacieibacterium frigidum gen. nov., sp. nov., within the family Sphingosinicellaceae is proposed. The type strain is LB1R16T (=CGMCC 1.11941T=NBRC 113873T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


Author(s):  
Zhaobin Huang ◽  
Xiaomei Wei ◽  
Qiliang Lai ◽  
Shiyong Chen ◽  
Jianjun Yuan

Two marine bacterial strains, designated S2-4-21T and MT2-5-19, were isolated from two tidal flat sediments of cordgrass Spartina alterniflora and adjacent oyster culture field in Quanzhou bay, China, respectively. Both strains were Gram-staining-negative, rod-shaped, non-flagellated, non-motile, aerobic, had NaCl requirements, and contained carotenoid and flexirubin pigments. The 16S rRNA gene sequence similarity (99.8%), average nucleotide identity value (99.4%) and average amino acid identity (99.3%) between strain S2-4-21T and strain MT2-5-19 strongly supported that they belonged to a single species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2-4-21T and strain MT2-5-19 formed a monophyletic branch affiliated to the family Flavobacteriaceae , sharing similarities of 94.6% with Euzebyella marina CY01T and E. saccharophila 7SM30T, and of 94.1 and 92.8% with E. algicola MEBiC 12267T and Pseudozobellia thermophile DSM 19858T, respectively. Phylogenomic analysis based on the whole genome sequences supported that the two strains formed a distinct monophyletic clade within Flavobacteriaceae members, which was phylogenetically different from the clades of Euzebyella and Pseudozobellia . The major respiratory quinone was menaquinone MK-6. The major fatty acids (>10%) consisted of C15 : 0 iso, C16 : 0, summed feature 9 (C17 : 1 iso ω9c/C16 : 0 10-methyl) and C17 : 0 iso 3-OH. The polar lipid profiles of strain S2-4-21T and strain MT2-5-19 are identical, including phosphatidylethanolamine, four unidentified aminolipids, and four unidentified lipids. The genomic size was 4.9–5.0 Mb with genomic DNA G+C content of 41.5 mol%. Based on the above characteristics, strains S2-4-21T and MT2-5-19 represented a novel species of a novel genus in the family Flavobacteriaceae . Thus, Pareuzebyella sediminis gen. nov. sp. nov. is proposed with type strain S2-4-21T (=MCCC 1K03818T=KCTC 72152T), and another strain MT2-5-19 (=KCTC 72539=MCCC 1K03874).


Author(s):  
Priya Lakra ◽  
Helianthous Verma ◽  
Chandni Talwar ◽  
Durgesh Narain Singh ◽  
Nirjara Singhvi ◽  
...  

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensi s DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA–DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans .


Author(s):  
Hisami Kobayashi ◽  
Yasuhiro Tanizawa ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Masanori Tohno

The taxonomic status of the species Clostridium methoxybenzovorans was assessed. The 16S rRNA gene sequence, whole-genome sequence and phenotypic characterizations suggested that the type strain deposited in the American Type Culture Collection ( C. methoxybenzovorans ATCC 700855T) is a member of the species Eubacterium callanderi . Hence, C. methoxybenzovorans ATCC 700855T cannot be used as a reference for taxonomic study. The type strain deposited in the German Collection of Microorganism and Cell Cultures GmbH (DSM 12182T) is no longer listed in its online catalogue. Also, both the 16S rRNA gene and the whole-genome sequences of the original strain SR3T showed high sequence identity with those of Lacrimispora indolis (recently reclassified from Clostridium indolis ) as the most closely related species. Analysis of the two genomes showed average nucleotide identity based on blast and digital DNA–DNA hybridization values of 98.3 and 87.9 %, respectively. Based on these results, C. methoxybenzovorans SR3T was considered to be a member of L. indolis .


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 870-878 ◽  
Author(s):  
Karoline Kläring ◽  
Sarah Just ◽  
Ilias Lagkouvardos ◽  
Laura Hanske ◽  
Dirk Haller ◽  
...  

Three strains of an anaerobic, Gram-stain-positive coccobacillus were isolated from the intestines of mice. These strains shared 100 % similarity in their 16S rRNA gene sequences, but were distantly related to any described members of the family Lachnospiraceae (<94 %). The most closely related species with names that have standing in nomenclature were Robinsoniella peoriensis , Ruminococcus gnavus , Blautia producta and Clostridium xylanolyticum . Phylogenetic relationships based on 16S rRNA gene sequence analysis were confirmed by partial sequencing of hsp60 genes. The use of an in-house database search pipeline revealed that the new isolates are most prevalent in bovine gut samples when compared with human and mouse samples for Ruminococcus gnavus and B. producta . All three isolated strains shared similar cellular fatty acid patterns dominated by C16 : 0 methyl ester. Differences in the proportions of C12 : 0 methyl ester, C14 : 0 methyl ester and C18 : 1 cis-11 dimethyl acetal were observed when compared with phylogenetically neighbouring species. The major short-chain fatty acid produced by strain SRB-530-5-HT was acetic acid. This strain tested positive for utilization of d-fructose, d-galacturonic acid, d-malic acid, l-alanyl l-threonine and l-glutamic acid but was negative for utilization of amygdalin, arbutin, α-d-glucose, 3-methyl d-glucose and salicin, in contrast to the type strain of the closest related species Robinsoniella peoriensis . The isolates were not able to use mannitol for growth. Based on genotypic, phenotypic and chemotaxonomic characteristics, we propose to create the new genus and species Murimonas intestini gen. nov., sp. nov. to accommodate the three strains SRB-530-5-HT ( = DSM 26524T = CCUG 63391T) (the type strain of Murimonas intestini), SRB-509-4-S-H ( = DSM 27577 = CCUG 64595) and SRB-524-4-S-H ( = DSM 27578 = CCUG 64594).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1007-1012 ◽  
Author(s):  
Pok Yui Lai ◽  
Li Miao ◽  
On On Lee ◽  
Ling-Li Liu ◽  
Xiao-Jian Zhou ◽  
...  

A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20–25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18 : 1ω6c and/or C18 : 1ω7c, C18 : 1ω7c 11-methyl and C16 : 1ω7c and/or C16 : 1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius . The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae , for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T ( = JCM 17872T  = NRRL B-59665T) as the type strain.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 345-351 ◽  
Author(s):  
Mohammad Ali Amoozegar ◽  
Maryam Bagheri ◽  
Maryam Didari ◽  
Seyed Abolhassan Shahzedeh Fazeli ◽  
Peter Schumann ◽  
...  

A novel Gram-positive, moderately halophilic bacterium, designated strain X4BT, was isolated from soil around the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain X4BT were motile rods and formed ellipsoidal endospores at a terminal or subterminal position in swollen sporangia. Strain X4BT was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5–22.5 % (w/v), with optimum growth occurring at 7.5 % (w/v) NaCl. The optimum temperature and pH for growth were 35 °C and pH 7.0. Analysis of 16S rRNA gene sequence revealed that strain X4BT is a member of the family Bacillaceae , constituting a novel phyletic lineage within this family. Highest sequence similarities were obtained with the 16S rRNA gene sequences of the type strains of Sediminibacillus albus (96.0 %), Paraliobacillus ryukyuensis (95.9 %), Paraliobacillus quinghaiensis (95.8 %) and Sediminibacillus halophilus (95.7 %), respectively. The DNA G+C content of this novel isolate was 35.2 mol%. The major cellular fatty acids of strain X4BT were anteiso-C15 : 0 and anteiso-C17 : 0 and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two aminolipids, an aminophospholipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (89 %) and MK-6 (11 %). The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On the basis of 16S rRNA gene sequence analysis in combination with chemotaxonomic and phenotypic data, strain X4BT represents a novel species in a new genus in the family Bacillaceae , order Bacillales for which the name Saliterribacillus persicus gen. nov., sp. nov. is proposed. The type strain of the type species (Saliterribacillus persicus) is X4BT ( = IBRC-M 10629T = KCTC 13827T).


Sign in / Sign up

Export Citation Format

Share Document