scholarly journals Mucilaginibacter flavus sp. nov., isolated from wetland

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1304-1309 ◽  
Author(s):  
Yochan Joung ◽  
Haneul Kim ◽  
Beom-Il Lee ◽  
Heeyoung Kang ◽  
Tae-Su Kim ◽  
...  

A non-motile, pale yellow, colony-forming strain, designated HME6839T, was isolated from the wetland of Jeju Island, Republic of Korea. The major fatty acids of strain HME6839T were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), iso-C15 : 0 and C16 : 1ω5c. The DNA G+C content was 41.2 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HME6839T formed a lineage within the genus Mucilaginibacter . Strain HME6857T was closely related to Mucilaginibacter dorajii (96.7 %), Mucilaginibacter polysacchareus (96.5 %) and Mucilaginibacter lappiensis (96.3 %). On the basis of the chemotaxonomic and phylogenetic results presented in this study, strain HME6839T represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter flavus sp. nov., is proposed. The type strain is HME6839T ( = KCTC 23441T = CECT 7857T).

2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 413-419 ◽  
Author(s):  
Yochan Joung ◽  
Haneul Kim ◽  
Heeyoung Kang ◽  
Beom-Il Lee ◽  
Tae-Seok Ahn ◽  
...  

A non-motile, yellow–orange-pigmented bacterial strain, designated HME6664T, was isolated from Lake Soyang, Republic of Korea. The major fatty acids of strain HME6664T were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c; 44.7 %) and iso-C15 : 0 (20.2 %). The DNA G+C content was 40.8 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HME6664T formed a lineage within the genus Mucilaginibacter . Strain HME6664T was closely related to Mucilaginibacter ximonensis (96.7 %), Mucilaginibacter dorajii (96.5 %) and Mucilaginibacter lappiensis (96.3 %). On the basis of the evidence presented in this study, strain HME6664T represents a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter soyangensis sp. nov., is proposed. The type strain is HME6664T ( = KCTC 23261T = CECT 7824T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1702-1708 ◽  
Author(s):  
M. Madhaiyan ◽  
C. J. Hu ◽  
J. Jegan Roy ◽  
S.-J. Kim ◽  
H.-Y. Weon ◽  
...  

Four orange-pigmented isolates, L7-456, L7-484T, L9-479 and L9-753T, originating from surface-sterilized leaf tissues of Jatropha curcas L. cultivars were characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that all four isolates belong to the genus Aureimonas . In these analyses, strain L7-484T appeared to be most closely related to Aureimonas ureilytica 5715S-12T (95.7 % sequence identity). The 16S rRNA gene sequences of strains L7-456, L9-479 and L9-753T were found to be identical and also shared the highest similarity with A. ureilytica 5715S-12T (97.5 %). Both L7-484T and L9-753T contained Q-10 and Q-9 as predominant ubiquinones and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidyldimethylethanolamine, sulfoquinovosyldiacylglycerol and an aminophospholipid as the major polar lipids. C18 : 1ω7c and C16 : 0 were the major fatty acids. Similar to other species in the genus Aureimonas , hydroxylated fatty acids (e.g. C18 : 1 2-OH) and cyclic fatty acids (C19 : 0 cyclo ω8c) were also present. The DNA G+C contents of L7-484T and L9-753T were 66.1 and 69.4 mol%, respectively. Strains L7-484T and L9-753T exhibited less than 40 % DNA–DNA hybridization both between themselves and to A. ureilytica KACC 11607T. Our results support the proposal that strain L7-484T represents a novel species within the genus Aureimonas , for which the name Aureimonas jatrophae sp. nov. is proposed, and that strains L9-753T, L7-456 ( = KACC 16229  = DSM 25023) and L9-479 ( = KACC 16228  = DSM 25024) represent a second novel species within the genus, for which the name Aureimonas phyllosphaerae sp. nov. is proposed. The type strains of Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov. are respectively L7-484T ( = KACC 16230T  = DSM 25025T) and L9-753T ( = KACC 16231T  = DSM 25026T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2657-2663 ◽  
Author(s):  
Shasha Wang ◽  
Lijing Jiang ◽  
Xuewen Liu ◽  
Suping Yang ◽  
Zongze Shao

Strains 1-1NT and GYSZ_1T were isolated from marine sediments collected from the coast of Xiamen, PR China. Cells of the two strains were Gram-stain-negative, rod-shaped or slightly curved. Strain 1-1NT was non-motile, whereas strain GYSZ_1T was motile by means of one polar flagellum. The temperature, pH and salinity concentration ranges for growth of 1-1NT were 10–45 °C (optimum 30 °C), pH 5.5–8.0 (optimum 7.0) and 0–90 g l−1 NaCl (optimum 50 g l−1), while the growth of GYSZ_1T occurred at 4–45 °C (optimum 33 °C), pH 5.0–8.5 (optimum 6.5) and 5–90 g l−1 NaCl (optimum 20 g l−1). The two novel isolates were obligate chemolithoautotrophs capable of growth using hydrogen, thiosulfate, sulfide or elemental sulfur as the sole energy source, and nitrate, elemental sulfur or molecular oxygen as an electron acceptor. The major fatty acids of 1-1NT were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C18 : 0, while the predominant fatty acids of strain GYSZ_1T were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and C14 : 0 3-OH. The DNA G+C contents of 1-1NT and GYSZ_1T were 34.5 mol% and 33.2 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that 1-1NT and GYSZ_1T represented members of the genus Sulfurimonas , with the highest sequence similarities to Sulfurimonas crateris SN118T (97.4 %) and Sulfurimonas denitrificans DSM 1251T (94.7 %), respectively. However, 1-1NT and GYSZ_1T shared 95.5 % similarity of 16S rRNA gene sequences, representing different species of the genus Sulfurimonas . On the basis of the physiological properties and the results of phylogenetic analyses, including average nucleotide identity and in silico DNA–DNA hybridization values, strains 1-1NT and GYSZ_1T represent two novel species within the genus Sulfurimonas , for which the names Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov. are proposed, with the type strains 1-1NT (=MCCC 1A14514T=KCTC 15851T) and GYSZ_1T (=MCCC 1A14739T=KCTC 15853T), respectively. Our results also justify an emended description of the genus Sulfurimonas .


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3427-3432 ◽  
Author(s):  
Guanghua Wang ◽  
Xinfeng Zheng ◽  
Shuailiang Xu ◽  
Ge Dang ◽  
Hongfei Su ◽  
...  

A Gram-stain-negative, non-spore-forming, aerobic, curved rod-shaped bacterium, designed strain R142T, was isolated from a coralline algae Tricleocarpa sp. in the Beibu Gulf, China. Optimal growth occurred with 0–0.5 % (w/v) NaCl, at 25 °C and at pH 8. Global alignment based on 16S rRNA gene sequences indicated that strain R142T shared 93.8 % similarity with its closest type strain, Pseudomaricurvus alkylphenolicus KU14GT. Phylogenetic analyses showed that strain R142T forms a distinct branch alongside Maricurvus nonylphenolicus KU41ET, Pseudoteredinibacter isoporae SW-11T, Pseudomaricurvus alkylphenolicus KU14GT, Pseudomaricurvus alcaniphilus MEBiC06469T and Aestuariicella hydrocarbonica SM-6T. The major polar lipids of strain R142T were phosphatidylethanolamine and phosphatidylglycerol. The primary cellular fatty acids were C16 : 0, C16 : 1ω7c, C18 : 1ω7c, C18 : 0 and C14 : 0. The genome DNA G+C ratio was 56.4 mol%. The only detected respiratory quinone was ubiquinone 8. The low 16S rRNA gene sequence similarity and differences in cellular fatty acids readily distinguished strain R142T from all validly published type strains. Strain R142T is therefore suggested to represent a novel species of a new genus, for which the name Exilibacterium tricleocarpae gen. nov., sp. nov. is proposed. The type strain of Exilibacterium tricleocarpae is R142T (=MCCC 1K03816T=KCTC 72138T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 88-94 ◽  
Author(s):  
Kornelia Kosowski ◽  
Marie Schmidt ◽  
Rüdiger Pukall ◽  
Gerd Hause ◽  
Peter Kämpfer ◽  
...  

Two strains, 8-4-E12T and 8-4-E13T, were isolated from a biowaste composting reactor. Based on 16S rRNA gene sequences, both strains belong to the genus Bacillus . Strain 8-4-E12T was most closely related to the type strains of Bacillus shackletonii , B. acidicola , B. sporothermodurans and B. oleronius (96.4, 96.3, 96.0 and 95.6 % 16S rRNA gene similarity, respectively), whereas strain 8-4-E13T was most closely related to the type strain of Bacillus humi (96.5 % sequence similarity). Strains 8-4-E12T and 8-4-E13T shared 94 % 16S rRNA gene sequence similarity. The fatty acid profile of strain 8-4-E12T was dominated by saturated iso- and anteiso-branched fatty acids (iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0), and also contained considerable amounts of C16 : 0. The fatty acid profile of strain 8-4-E13T showed a predominance of iso-C15 : 0 (65 %), with smaller amounts of other saturated branched-chain fatty acids along with an unsaturated alcohol. Both strains contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids. Additionally, strain 8-4-E12T contained an unknown lipid and strain 8-4-E13T two unknown (amino-)phospholipids. The diagnostic diamino acid found in the cell-wall peptidoglycan of 8-4-E12T and 8-4-E13T was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The results of physiological and biochemical tests also allowed phenotypic differentiation of the two strains from each other and from related Bacillus species. On the basis of their phylogenetic, phenotypic and chemotaxonomic properties, strains 8-4-E12T and 8-4-E13T represent novel species of the genus Bacillus , for which the names Bacillus pervagus sp. nov. (type strain 8-4-E12T = DSM 23947T = LMG 27601T) and Bacillus andreesenii sp. nov. (type strain 8-4-E13T = DSM 23948T = LMG 27602T) are proposed.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2655-2660 ◽  
Author(s):  
Bungonsiri Intra ◽  
Atsuko Matsumoto ◽  
Yuki Inahashi ◽  
Satoshi Ōmura ◽  
Yōko Takahashi ◽  
...  

A novel actinomycete, strain 44EHWT, was isolated from rhizospheric soil under an Elephant ear plant (Colocasia esculenta) in Bangkok, Thailand. Strain 44EHWT produced long branching hyphae and abundant aerial mycelia with chains of rod-shaped spores. Whole-cell hydrolysates contained galactose, glucose, arabinose, ribose, mannose and rhamnose as diagnostic sugars. meso-Diaminopimelic acid was the diamino acid and glycine, alanine and glutamic acid were present in the cell-wall peptidoglycan with the acyl type of the peptidoglycan being acetyl. Phospholipids consisted of phosphatidylethanolamine, phosphatidylethanolamine with hydroxy fatty acids and diphosphatidylglycerol, as well as other unknown phospholipids; however, no mycolic acids were detected. The predominant menaquinone observed was MK-9(H4) and major fatty acids were iso-C16 : 0 and 2-OH iso-C16 : 0. The G+C content of genomic DNA was 74 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this isolate was most similar to Actinokineospora enzanensis NBRC 16517T. However, DNA–DNA hybridization revealed a low relatedness between this isolate and A. enzanensis NBRC 16517T, indicating that this isolate represented a novel species in the genus Actinokineospora . On the basis of 16S rRNA gene sequence analysis, phenotypic characteristics and DNA–DNA hybridization data, we propose that strain 44EHWT represents a novel species in the genus Actinokineospora , Actinokineospora bangkokensis. The type strain is 44EHWT ( = BCC 53155T = NBRC 108932T).


Author(s):  
Juan Zhou ◽  
Sihui Zhang ◽  
Gui Zhang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
...  

Six novel strains (ZJ34T, ZJ561, ZJ750T, ZJ1629, zg-993T and zg-987) isolated from faeces and respiratory tracts of Marmota himalayana from the Qinghai–Tibet Plateau of PR China were characterized comprehensively. The results of analyses of the 16S rRNA gene and genome sequences indicated that the six strains represent three novel species of the genus Actinomyces , and are closely related to Actinomyces urogenitalis DSM 15434T (16S rRNA gene sequences similarities, 94.9–98.7 %), Actinomyces weissii CCUG 61299T (95.6–96.6 %), Actinomyces bovis CCTCC AB2010168T (95.7 %) and Actinomyces bowdenii DSM 15435T (95.2–96.4 %), with values of digital DNA–DNA hybridization less than 30.1 % when compared with their closest relatives but higher than 70 % within each pair of novel strains (ZJ34T/ZJ561, ZJ750T/ZJ1629 and zg-993T/zg-987). All the novel strains had C18 : 1 ω9c and C16 : 0 as the two most abundant major fatty acids. MK-9(H4) or MK-8(H4) was the sole or predominant respiratory quinone of strains ZJ34T, ZJ750T and zg-993T and their polar lipid profiles differed, but all had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and phosphatidyl inositol mannoside as major components. ZJ750T shared identical peptidoglycan amino acid profile with ZJ34T (alanine, glutamic acid, lysine and ornithine) and the same whole-cell sugar composition with zg-993T (glucose, rhamnose and ribose). Strain zg-993T contained alanine, aspartic acid, glutamic acid, glycine and lysine in the peptidoglycan, and the only sugar in ZJ34T was ribose. The DNA G+C contents of the novel strains were within the range of 65.8–70.1 mol%. On the basis of the results from the aforementioned analyses, the six novel strains were classified as representing three novel species of genus Actinomyces , for which the names Actinomyces faecalis sp. nov. [type strain ZJ34T (=GDMCC 1.1952T=JCM 34355T)], Actinomyces respiraculi sp. nov. [type strain ZJ750T (=GDMCC 1.1950T=JCM 34356T)] and Actinomyces trachealis sp. nov. [type strain zg-993T (=GDMCC 1.1956T=JCM 34357T)] were proposed, respectively.


Author(s):  
Jia-Hong Wu ◽  
Ya-Xiu You ◽  
Chiu-Chung Young ◽  
Soon-Wo Kwon ◽  
Wen-Ming Chen

This study presents taxonomic descriptions of strains CYK-4T and TWA-26T isolated from freshwater habitats in Taiwan. Both strains were Gram-stain-negative, strictly aerobic, motile by gliding and rod-shaped. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that both strains belonged to the genus Flavobacterium . Analysis of 16S rRNA gene sequences showed that strains CYK-4T and TWA-26T shared 92.7 % sequence similarity and were most closely related to Flavobacterium ovatum W201ET (95.6 %) and Flavobacterium aquaticum JC164T (96.7 %), respectively. Both strains shared common chemotaxonomic characteristics comprising MK-6 as the main isoprenoid quinone, iso-C15 : 0 and iso-C15 : 1 G as the predominant fatty acids, phosphatidylethanolamine as the principal polar lipid, and homospermidine as the major polyamine. The DNA G+C contents of strains CYK-4T and TWA-26T were 41.5 and 31.8 mol%, respectively. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus Flavobacterium , for which the names Flavobacterium lotistagni sp. nov. (type strain CYK-4T=BCRC 81192T=LMG 31330T) and Flavobacterium celericrescens sp. nov. (type strain TWA-26T=BCRC 81200T=LMG 31333T) are proposed.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 661-666 ◽  
Author(s):  
Van-An Hoang ◽  
Yeon-Ju Kim ◽  
Ngoc Lan Nguyen ◽  
Deok-Chun Yang

A Gram-stain-negative, non-motile, red bacterium, designated DCY57T, was isolated from soil of a ginseng field in a mountainous region of Chungnam province in South Korea. Strain DCY57T grew with 0–1 % (w/v) NaCl and the optimum temperature for growth was 30 °C. Strain DCY57T contained MK-7 as the predominant menaquinone. The polyamine was sym-homospermidine. The major fatty acids were C16:1ω5c, iso-C15:0, anteiso-C15:0 and summed feature 3 (containing C16:1ω7c and/or C16:1ω6c). The major polar lipids were phosphatidylethanolamine, unknown aminophospholipids, unknown aminolipids and unknown lipids. The DNA G+C content was 58.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DCY57T was most closely related to members of the genus Hymenobacter . The isolate exhibited 91.7 % 16S rRNA gene sequence similarity with H. soli PB17T, 94.5 % with H. flocculans A2-50AT and 95.8 % with H. metalli A2-91T. On the basis of the evidence presented in this study, strain DCY57T represents a novel species within the genus Hymenobacter , for which the name Hymenobacter ginsengisoli sp. nov. is proposed. The type strain is DCY57T ( = KCTC 23674T = JCM 17841T).


Sign in / Sign up

Export Citation Format

Share Document