scholarly journals Loktanella variabilis sp. nov., isolated from a tidal flat

2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2579-2585 ◽  
Author(s):  
Ja-Min Park ◽  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Jae Yeol Cho ◽  
Jung-Hoon Yoon

Two Gram-negative, aerobic and rod-shaped or ovoid bacterial strains with different colony colours (greyish yellow and moderate orange), designated J-MR2-YT and J-MR2-O, were isolated from a tidal flat in the South Sea of South Korea. The two novel strains grew optimally at 35–37 °C. Strains J-MR2-YT and J-MR2-O showed no difference in their 16S rRNA gene sequences, and the mean DNA–DNA relatedness between them was 94 %. Phylogenetic trees based on 16S rRNA gene sequences revealed that strains J-MR2-YT and J-MR2-O clustered consistently with the type strains of Loktanella soesokkakensis , L. hongkongensis and L. cinnabarina , with which it exhibited 97.83–99.06 % sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Loktanella were 94.01–96.26 %. Both strains contained Q-10 as the predominant ubiquinone, C18 : 1ω7c as the major fatty acid and phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and one unidentified aminolipid as the major polar lipids. The DNA G+C contents of strains J-MR2-YT and J-MR2-O were 68.1 and 68.4 mol%, respectively, and DNA–DNA relatedness values with the type strains of L. soesokkakensis , L. hongkongensis and L. cinnabarina were 19–37 %. Differential phenotypic properties, together with their phylogenetic and genetic distinctiveness, revealed that the two novel strains are separated from other species of the genus Loktanella . On the basis of the data presented, strains J-MR2-YT and J-MR2-O are proposed to represent a novel species of the genus Loktanella , for which the name Loktanella variabilis sp. nov. is proposed. The type strain is J-MR2-YT ( = KCTC 42074T = CECT 8572T).

Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2020 ◽  
Vol 70 (12) ◽  
pp. 6301-6306
Author(s):  
Sooyeon Park ◽  
Seo Yeon Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M23T, was isolated from tidal flat sediment collected from the Yellow Sea, Republic of Korea. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M23T fell within the clade comprising the type strains of Pseudoalteromonas species, clustering with the type strains of P. byunsanensis and P. amylolytica . Strain JBTF-M23T exhibited the highest 16S rRNA gene sequence similarity value (98.6 %) to the type strain of P. rubra and sequence similarities of 98.3 and 97.7 % to the type strains of P. byunsanensis and P. amylolytica, respectively. The DNA G+C content of strain JBTF-M23T from genomic sequence data was 41.98 %. The ANI and dDDH values between strain JBTF-M23T and the type strains of P. rubra , P. byunsanensis and P. amylolytica were 71.3–76.6 and 19.4–19.9 %, respectively. Strain JBTF-M23T contained Q-8 as the predominant ubiquinone and C16 : 1  ω7c and/or C16 : 1  ω6c, C16 : 0 and C18 : 1  ω7c as the major fatty acids. The major polar lipids of strain JBTF-M23T were phosphatidylethanolamine and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M23T is separated from recognized Pseudoalteromonas species. On the basis of the data presented, strain JBTF-M23Tis considered to represent a novel species of the genus Pseudoalteromonas , for which the name Pseudoalteromonas caenipelagi sp. nov. is proposed. The type strain is JBTF-M23T(=KACC 19900T=NBRC 113647T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1876-1881 ◽  
Author(s):  
Sooyeon Park ◽  
Sung-Min Won ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, AH-M5T, which was isolated from a tidal flat sediment at Aphae Island in South Korea, was characterized taxonomically. Strain AH-M5T grew optimally at 25 °C, at pH 7.0–8.0 and in presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain AH-M5T clustered coherently with the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus , showing 93.4–94.3 % sequence similarity. The novel strain exhibited 16S rRNA gene sequence similarity values of less than 93.4 % to the type strains of other recognized species. Strain AH-M5T contained MK-6 as the predominant menaquinone and iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) as the major fatty acids. The polar lipid profile of strain AH-M5T containing phosphatidylethanolamine and one unidentified lipid as major components was differentiated from those of the type strains of Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . The DNA G+C content of strain AH-M5T was 34.8 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain AH-M5T is distinguished from Mangrovimonas yunxiaonensis and Meridianimaribacter flavus . On the basis of the data presented, strain AH-M5T is considered to represent a novel genus and species within the family Flavobacteriaceae , for which the name Seonamhaeicola aphaedonensis gen. nov., sp. nov. is proposed. The type strain of the type species is AH-M5T ( = KCTC 32578T = CECT 8487T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 491-496 ◽  
Author(s):  
Gareth J. Everest ◽  
Sarah M. Curtis ◽  
Filomena De Leo ◽  
Clara Urzì ◽  
Paul R. Meyers

A novel actinobacterium, strain BC637T, was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus Kribbella by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the gyrB, rpoB, relA, recA and atpD concatenated gene sequences showed that strain BC637T was most closely related to the type strains of Kribbella lupini and Kribbella endophytica . DNA–DNA hybridization experiments confirmed that strain BC637T is a genomic species that is distinct from its closest phylogenetic relatives, K. endophytica DSM 23718T (63 % DNA relatedness) and K. lupini LU14T (63 % DNA relatedness). Physiological comparisons showed that strain BC637T is phenotypically distinct from the type strains of K. endophytica and K. lupini . Thus, strain BC637T represents the type strain of a novel species, for which the name Kribella italica sp. nov. is proposed ( = DSM 28967T = NRRL B-59155T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1841-1846 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic, curved-to-spiral-rod-shaped bacterium, designated AH-MY2T, was isolated from a tidal flat on Aphae island in the sea to the south-west of South Korea, and its taxonomic position was investigated using a polyphasic taxonomic approach. Strain AH-MY2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain AH-MY2T clustered with the type strain of Terasakiella pusilla and that this cluster joined the clade comprising the type strains of species of the genus Thalassospira . Strain AH-MY2T exhibited 16S rRNA gene sequence similarity values of 90.6 % to the type strain of Terasakiella pusilla and of less than 91.0 % to the type strains of other species with validly published names. Strain AH-MY2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain AH-MY2T were phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids and one unidentified glycolipid. The DNA G+C content of strain AH-MY2T was 56.0 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain AH-MY2T represented a novel genus and species within the family Rhodospirillaceae of the class Alphaproteobacteria , for which the name Aestuariispira insulae gen. nov., sp. nov. is proposed. The type strain of Aestuariispira insulae is AH-MY2T ( = KCTC 32577T = CECT 8488T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3872-3877 ◽  
Author(s):  
Sooyeon Park ◽  
In Kyu Kim ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-spore-forming, motile by single polar flagellum and ovoid or rod-shaped bacterial strain, designated JBTF-M18T, was isolated from tidal-flat sediment collected from the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M18T fell within the clade comprising the type strains of Shewanella species. Strain JBTF-M18T exhibited 16S rRNA gene sequence similarity values of 97.1–98.8 % to the type strains of S. loihica , S. aquimarina , S. waksmanii and S. marisflavi and of less than 96.9 % to the type strains of the other Shewanella species. The average nucleotide identity and digital DNA–DNA hybridization values between strain JBTF-M18T and the type strains of S. waksmanii and S. loihica were 72.0 and 89.5% and 18.9 and 38.1 %, respectively. DNA–DNA relatedness values between strain JBTF-M18T and the type strains of S. aquimarina and S. marisflavi were 14 and 19 %, respectively. The DNA G+C content of strain JBTF-M18T from genomic sequence data was 52.9 %. Strain JBTF-M18Tcontained MK-6 as the predominant menaquinone and Q-7 and Q-8 as the predominant ubiquinones. It had iso-C15 : 0, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C16 : 0 as the major fatty acids. The major polar lipids of strain JBTF-M18T were phosphatidylethanolamine and phosphatidylglycerol. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M18T is separated from recognized Shewanella species. On the basis of the data presented, strain JBTF-M18T is considered to represent a novel species of the genus Shewanella , for which the name Shewanella insulae sp. nov. is proposed. The type strain is JBTF-M18T (=KACC 19869T=NBRC 113583T).


Author(s):  
Sooyeon Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-flagellated, coccoid, ovoid or rod-shaped bacterial strain, TSTF-M16T, was isolated from a tidal flat on the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain TSTF-M16T fell within a clade comprising the type strains of Sulfitobacter species. Strain TSTF-M16T exhibited 16S rRNA gene sequence similarities of 98.5 and 98.1 % to the type strains of Sulfitobacter mediterraneus and Sulfitobacter sabulilitoris , respectively, and 96.2–97.8 % to the type strains of the other Sulfitobacter species. The average nucleotide identity and digital DNA–DNA hybridization values between the genomic sequences of strain TSTF-M16T and the type strains of 16 Sulfitobacter species were 70.6–74.2 and 17.9–19.0 %, respectively. The DNA G+C content of strain TSTF-M16T from genomic sequence data was 59.26 mol%. Strain TSTF-M16T contained Q-10 as the predominant ubiquinone and C18 : 1  ω7c as the major fatty acid. The major polar lipids of strain TSTF-M16T were phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. Distinguished phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain TSTF-M16T is separated from recognized Sulfitobacter species. On the basis of the data presented here, strain TSTF-M16T is considered to represent a novel species of the genus Sulfitobacter , for which the name Sulfitobacter aestuariivivens sp. nov. is proposed. The type strain is TSTF-M16T (=KACC 21645T=NBRC 114501T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 228-235 ◽  
Author(s):  
Abhijit Poddar ◽  
Rinchen T. Lepcha ◽  
Subrata K. Das

Comparative phenotypic, chemotaxonomic and genetic analysis revealed significant similarities among strains of the genera Tepidiphilus and Petrobacter . Analysis of 16S rRNA gene sequences and DNA–DNA relatedness of the type strains Tepidiphilus margaritifer N2-214T and Petrobacter succinatimandens 4BONT showed sequence similarity of 98.9 % and less than 40 % relatedness, indicating that these strains represent different species of same genus. Both strains had phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and diphosphatidylglycerol as major polar lipids. Their fatty acid profiles were almost identical, with the predominant fatty acids C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. In view of this, we propose to transfer the member of the genus Petrobacter to the genus Tepidiphilus as Tepidiphilus succinatimandens comb. nov. and to emend the description of the genus Tepidiphilus . Further, a novel bacterium, strain JHK30T, was isolated from a terrestrial hot spring located at Jharkhand, India, and was identified following a polyphasic approach. Cells were non-sporulating, aerobic, Gram-stain-negative rods and motile by a single polar flagellum. Optimum temperature for growth was 50–55 °C at pH 6.5–7.0. 16S rRNA gene sequence analysis revealed 99.71 % similarity with P. succinatimandens 4BONT ( = DSM 15512T) and 98.71 % with T. margaritifer N2-214T ( = DSM 15129T). However, DNA–DNA relatedness of strain JHK30T with these two type strains was well below 70 %. The DNA G+C base composition was 66.1 mol%. Strain JHK30T represents a novel species of the genus Tepidiphilus for which the name Tepidiphilus thermophilus sp. nov. is proposed. The type strain is JHK30T ( = JCM 19170T = LMG 27587T= DSM 27220T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1009-1015 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A lipolytic, Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated BPTF-M16T, was isolated from tidal flat sediment on the Yellow Sea in the Republic of Korea. Strain BPTF-M16T grew optimally at 30 °C and in the presence of 2.0–3.0 % (w/v) NaCl. A phylogenetic tree of 16S rRNA gene sequences showed that strain BPTF-M16T fell within the clade comprising the type strains of Altererythrobacter species. Strain BPTF-M16T exhibited 16S rRNA gene sequence similarity values of 98.0 and 97.1 % to the type strains of Altererythrobacter ishigakiensis and A ltererythrobacter marinus , respectively, and of less than 97.0 % to the type strains of the other recognized species. Strain BPTF-M16T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The major polar lipids detected in strain BPTF-M16T were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and one unidentified glycolipid. Mean DNA–DNA relatedness values of strain BPTF-M16T with the type strains of A. ishigakiensis and A. marinus were 22 and 13 %, respectively. The average nucleotide identity value between strain BPTF-M16T and the type strain of A. ishigakiensis was 76.80 %. Differential phenotypic properties, together with the phylogenetic and genetic data, revealed that strain BPTF-M16T is separated from recognized Altererythrobacter species. On the basis of the data presented here, strain BPTF-M16T is considered to represent a novel species of the genus Altererythrobacter , for which the name Altererythrobacter insulae sp. nov. is proposed. The type strain is BPTF-M16T (=KCTC 62421T=KACC 19609T=NBRC 113190T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 506-512 ◽  
Author(s):  
Kouta Hatayama ◽  
Hirofumi Shoun ◽  
Yasuichi Ueda ◽  
Akira Nakamura

Two strains, designated K2814T and K282, were isolated from a compost pile in Japan. These strains were Gram-stain-variable, aerobic, motile and endospore-forming rods. The strains produced a characteristic brown non-diffusible pigment. The 16S rRNA gene sequences of the strains were 100 % identical and had high similarity to that of Brevibacillus levickii LMG 22481T (97.3 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that these strains belong to the genus Brevibacillus . Strains K2814T and K282 contained meso-diaminopimelic acid in their cell walls. Strains K2814T and K282 contained MK-7 (96.0 and 97.2 %, respectively) and MK-8 (4.0 and 2.8 %, respectively) as the major and minor menaquinones, respectively. Their major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The DNA G+C contents of strains K2814T and K282 were 48.8 and 49.8 mol%, respectively. Polar lipids of strain K2814T were composed of phosphatidyl-N-methylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, three unidentified polar lipids, an unidentified aminophospholipid and an unidentified aminolipid. The level of DNA–DNA relatedness between strains K2814T and K282 was 99 or 100 %, and levels between strain K2814T and the type strains of seven related species of the genus Brevibacillus , including Brevibacillus levickii LMG 22481T, were below 59 %. From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, these two strains should be classified as representing a novel species of the genus Brevibacillus , for which the name Brevibacillus fulvus sp. nov. (type strain K2814T = JCM 18162T = ATCC BAA-2417T = DSM 25523T) is proposed.


Sign in / Sign up

Export Citation Format

Share Document