Brevibacillus fulvus sp. nov., isolated from a compost pile

2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 506-512 ◽  
Author(s):  
Kouta Hatayama ◽  
Hirofumi Shoun ◽  
Yasuichi Ueda ◽  
Akira Nakamura

Two strains, designated K2814T and K282, were isolated from a compost pile in Japan. These strains were Gram-stain-variable, aerobic, motile and endospore-forming rods. The strains produced a characteristic brown non-diffusible pigment. The 16S rRNA gene sequences of the strains were 100 % identical and had high similarity to that of Brevibacillus levickii LMG 22481T (97.3 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that these strains belong to the genus Brevibacillus . Strains K2814T and K282 contained meso-diaminopimelic acid in their cell walls. Strains K2814T and K282 contained MK-7 (96.0 and 97.2 %, respectively) and MK-8 (4.0 and 2.8 %, respectively) as the major and minor menaquinones, respectively. Their major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C17 : 0. The DNA G+C contents of strains K2814T and K282 were 48.8 and 49.8 mol%, respectively. Polar lipids of strain K2814T were composed of phosphatidyl-N-methylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid, three unidentified polar lipids, an unidentified aminophospholipid and an unidentified aminolipid. The level of DNA–DNA relatedness between strains K2814T and K282 was 99 or 100 %, and levels between strain K2814T and the type strains of seven related species of the genus Brevibacillus , including Brevibacillus levickii LMG 22481T, were below 59 %. From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, these two strains should be classified as representing a novel species of the genus Brevibacillus , for which the name Brevibacillus fulvus sp. nov. (type strain K2814T = JCM 18162T = ATCC BAA-2417T = DSM 25523T) is proposed.

2020 ◽  
Vol 70 (4) ◽  
pp. 2588-2595 ◽  
Author(s):  
Min-ling Zheng ◽  
Liang-hui Li ◽  
Bin Liu ◽  
Yu-bo Lin ◽  
Xiao-tuan Zhang ◽  
...  

Two Haemophilus -like isolates with similar biochemical characteristics, designated strains SZY H1T and SZY H2, were isolated from human semen specimens. Cells were Gram-negative, non-motile, non-acid-fast, pleomorphic rods or coccobacilli. The major fatty acids (>10 %) were C16 : 0, C14 : 0, iso-C16 : 0 and/or C14 : 0 3-OH and C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipids were determined to be phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminophospholipid, two unidentified polar lipids and four unidentified aminolipids. The major polyamine was found to be cadaverine. The near-full-length (1462 nt) 16S rRNA gene sequences analysis showed the two isolates were nearly identical (>99.8 %), and closely matched Haemophilus haemolyticus ATCC 33390T with 98.9–99.1 % sequence similarities. Phylogenetic analysis based on 16S rRNA gene sequences and concatenation of 30 protein markers also revealed that the isolates clustered together with H. haemolyticus ATCC 33390T, and formed a distinct lineage well separated from the other members of the genus Haemophilus . Further, the average nucleotide identity values between the two isolates and their related species were below the established cut-off values for species delineation (95 %). Based on these findings, the two isolates are considered to represent a new species of the genus Haemophilus , for which name Haemophilus seminalis sp. nov. is proposed. The type strain is SZY H1T (=NBRC 113782T=CGMCC 1.17137T).


Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1906-1911 ◽  
Author(s):  
Shih-Yi Sheu ◽  
Yu-Wen Shiau ◽  
Yan-Ting Wei ◽  
Wen-Ming Chen

To investigate the biodiversity of bacteria in the spring water of the Chengcing Lake Park in Taiwan, a Gram-stain-negative, rod-shaped, non-motile, non-spore-forming and aerobic bacterial strain, designated strain Chen16-4T, was isolated and characterized in a taxonomic study using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that the closest relatives of strain Chen16-4T were Sphingobium amiense YTT, Sphingobium yanoikuyae GIFU 9882T and Sphingobium scionense WP01T, with sequence similarities of 97.6, 97.1 and 97.0 %, respectively. A phylogenetic tree obtained with 16S rRNA gene sequences indicated that strain Chen16-4T and these three closest relatives formed an independent phylogenetic clade within the genus Sphingobium . The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of C18 : 1ω7c in the cellular fatty acid profile and the DNA G+C content also supported affiliation of the isolate to the genus Sphingobium . The DNA–DNA relatedness of strain Chen16-4T with respect to recognized species of the genus Sphingobium was less than 70 %. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Chen16-4T represents a novel species in the genus Sphingobium , for which the name Sphingobium fontiphilum sp. nov. is proposed. The type strain is Chen16-4T ( = BCRC 80308T = LMG 26342T = KCTC 23559T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1997-2003 ◽  
Author(s):  
Fehmida Bibi ◽  
Eu Jin Chung ◽  
Ajmal Khan ◽  
Che Ok Jeon ◽  
Young Ryun Chung

During a study of endophytic bacteria from coastal dune plants, a bacterial strain, designated YC6881T, was isolated from the root of Rosa rugosa collected from the coastal dune areas of Namhae Island, Korea. The bacterium was found to be Gram-staining-negative, motile, halophilic and heterotrophic with a single polar flagellum. Strain YC6881T grew at temperatures of 4–37 °C (optimum, 28–32 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0), and at NaCl concentrations in the range of 0–7.5 % (w/v) (optimum, 4–5 % NaCl). Strain YC6881T was catalase- and oxidase-positive and negative for nitrate reduction. According to phylogenetic analysis using 16S rRNA gene sequences, strain YC6881T belonged to the genus Rhizobium and showed the highest 16S rRNA gene sequence similarity of 96.9 % to Rhizobium rosettiformans , followed by Rhizobium borbori (96.3 %), Rhizobium radiobacter (96.1 %), Rhizobium daejeonense (95.9 %), Rhizobium larrymoorei (95.6 %) and Rhizobium giardinii (95.4 %). Phylogenetic analysis of strain YC6881T by recA, atpD, glnII and 16S–23S intergenic spacer (IGS) sequences all confirmed the phylogenetic arrangements obtained by using 16S rRNA gene sequences. Cross-nodulation tests showed that strain YC6881T was a symbiotic bacterium that nodulated Vigna unguiculata and Pisum sativum. The major components of the cellular fatty acids were C18 : 1ω7c (53.7 %), C19 : 0 cyclo ω8c (12.6 %) and C12 : 0 (8.1 %). The DNA G+C content was 52.8 mol%. Phenotypic and physiological tests with respect to carbon source utilization, antibiotic resistance, growth conditions, phylogenetic analyses of housekeeping genes recA, atpD and glnII, and fatty acid composition could be used to discriminate strain YC6881T from other species of the genus Rhizobium in the same sublineage. Based on the results obtained in this study, strain YC6881T is considered to represent a novel species of the genus Rhizobium , for which the name Rhizobium halophytocola sp. nov. is proposed. The type strain is YC6881T ( = KACC 13775T = DSM 21600T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5620-5626 ◽  
Author(s):  
Guanghua Wang ◽  
Shuailiang Xu ◽  
Ge Dang ◽  
Jianfeng Liu ◽  
Hongfei Su ◽  
...  

A novel Gram-stain-negative, non-endospore-forming, non-motile, aerobic bacterium (strain R33T) was isolated from coral Porites lutea and subjected to a polyphasic taxonomic study. The G+C content was 44.5 mol%. The only detected respiratory quinone was menaquinone 6 (MK-6). The major cellular fatty acids were iso-C15 : 0 and iso-C15 : 1 ω6c. The major polar lipids were phosphatidylethanolamine and two unidentified lipids. Global alignment based on 16S rRNA gene sequences indicated that strain R33T shares the highest sequence identity of 93.2 % with Muriicola marianensis A6B8T in the family Flavobacteriaceae . Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R33T forms a distinct branch in a stable clade comprising strain R33T and members of the genera Muriicola , Robiginitalea , Eudoraea and Zeaxanthinibacter . The phylogenomic analysis also supported this 16S rRNA gene-based phylogenetic result. Comparative genomic analysis indicated that strain R33T is rich in AraC-type DNA-binding domain-containing protein-coding genes, which means the regulation of carbon utilization is very complex. Low 16S rRNA gene identity, different polar lipids and/or cellular fatty acid profiles could readily distinguish strain R33T from any validly published type strains. Therefore, strain R33T is suggested to represent a new species in a new genus, for which the name Poritiphilus flavus gen. nov., sp. nov. is proposed. The type strain is R33T (=MCCC 1K03853T=KCTC 72443T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 937-941 ◽  
Author(s):  
Hui Xu ◽  
Yuanyuan Fu ◽  
Ning Yang ◽  
Zhixin Ding ◽  
Qiliang Lai ◽  
...  

Strain WPAGA1T was isolated from marine sediment of the west Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Flammeovirga . Strain WPAGA1T exhibited highest 16S rRNA gene sequence similarity with Flammeovirga yaeyamensis NBRC 100898T (98.1 %) and lower sequence similarity with Flammeovirga arenaria IFO 15982T (94.6 %) and other members of the genus Flammeovirga (<94.2 %). DNA–DNA relatedness studies showed that strain WPAGA1T was distinct from F. yaeyamensis NBRC 100898T and F. arenaria NBRC 15982T (43±4 % and 32±2 % relatedness values, respectively). Strain WPAGA1T could be distinguished from all known members of the genus Flammeovirga by a number of phenotypic features. However, the dominant fatty acids of strain WPAGA1T (iso-C15 : 0, C16 : 0 and C20 : 4ω6,9,12,15c), the major polyamine (cadaverine) and the G+C content of the chromosomal DNA (32.9 mol%) were consistent with those of members of the genus Flammeovirga . Based on phenotypic and chemotaxonomic features and 16S rRNA gene sequences, strain WPAGA1T can be assigned to the genus Flammeovirga as a representative of a novel species, for which the name Flammeovirga pacifica sp. nov. is proposed; the type strain is WPAGA1T ( = CCTCC AB 2010364T = LMG 26175T = DSM 24597T = MCCC 1A06425T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3804-3809 ◽  
Author(s):  
Samantha J. Stropko ◽  
Shannon E. Pipes ◽  
Jeffrey D. Newman

While characterizing a related strain, it was noted that there was little difference between the 16S rRNA gene sequences of Bacillus indicus LMG 22858T and Bacillus cibi DSM 16189T. Phenotypic characterization revealed differences only in the utilization of mannose and galactose and slight variation in pigmentation. Whole genome shotgun sequencing and comparative genomics were used to calculate established phylogenomic metrics and explain phenotypic differences. The full, genome-derived 16S rRNA gene sequences were 99.74 % similar. The average nucleotide identity (ANI) of the two strains was 98.0 %, the average amino acid identity (AAI) was 98.3 %, and the estimated DNA–DNA hybridization determined by the genome–genome distance calculator was 80.3 %. These values are higher than the species thresholds for these metrics, which are 95 %, 95 % and 70 %, respectively, suggesting that these two strains should be classified as members of the same species. We propose reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and an emended description of Bacillus indicus .


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 900-904 ◽  
Author(s):  
Hui-Jing Du ◽  
Yu-Qin Zhang ◽  
Hong-Yu Liu ◽  
Jing Su ◽  
Yu-Zhen Wei ◽  
...  

An endophytic actinomycete, designated strain I10A-01259T, was isolated from a surface-sterilized fruit of Lonicera maackii (Rupr.) Maxim., a medicinal plant, which was collected from a suburb of Beijing, China. Whole-cell hydrolysates of the isolate contained galactose and meso-diaminopimelic acid. The predominant phospholipids were phosphatidylglycerol and diphosphatidylglycerol; the menaquinones consisted mainly of MK-9, MK-11 and MK-12, with a minor amount of MK-10. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. Comparative analysis of 16S rRNA gene sequences indicated that strain I10A-01259T was most closely related to Nocardiopsis arabia S186T (93.2 % sequence similarity), Thermobifida halotolerans YIM 90462T (93.0 %) and other strains of genera within the families Nocardiopsaceae and Thermomonosporaceae . On the phylogenetic tree based on 16S rRNA gene sequences, strain I10A-01259T fell within the radius of the suborder Streptosporangineae , in which the strain formed a distinct lineage next to the genera of the families Nocardiopsaceae and Thermomonosporaceae . Based on the data from our polyphasic taxonomic study, a novel genus and species, Allonocardiopsis opalescens gen. nov., sp. nov., are proposed within the suborder Streptosporangineae . The type strain of Allonocardiopsis opalescens is strain I10A-01259T ( = CPCC 203428T  = DSM 45601T  = KCTC 19844T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 95-100 ◽  
Author(s):  
Yong Tao ◽  
Yan Zhou ◽  
Xiaohong He ◽  
Xiaohong Hu ◽  
Daping Li

Strain MBRT was isolated from landfill leachate in a solid-waste disposal site in Chengdu, Sichuan, China. An analysis of 16S rRNA gene sequences revealed that the isolate was closely related to members of the genus Pseudomonas , sharing the highest sequence similarities with Pseudomonas toyotomiensis HT-3T (99.8 %), Pseudomonas alcaliphila AL15-21T (99.7 %) and Pseudomonas oleovorans ATCC 8062T (99.4 %). Multi-locus sequence analysis based on three housekeeping genes (gyrB, rpoB and rpoD) provided higher resolution at the species level than that based on 16S rRNA gene sequences, which was further confirmed by less than 70 % DNA–DNA relatedness between the new isolate and P. toyotomiensis HT-3T (61.3 %), P. alcaliphila AL15-21T (51.5 %) and P. oleovorans ATCC 8062T (57.8 %). The DNA G+C content of strain MBRT was 61.9 mol% and the major ubiquinone was Q-9. The major cellular fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0, and C16 : 1ω7c and/or C16 : 1ω6c. Polyphasic analysis indicates that strain MBRT represents a novel species of the genus Pseudomonas , for which the name Pseudomonas chengduensis sp. nov. is proposed. The type strain is MBRT ( = CGMCC 2318T = DSM 26382T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2662-2668 ◽  
Author(s):  
Rosa Margesin ◽  
Cathrin Spröer ◽  
De-Chao Zhang ◽  
Hans-Jürgen Busse

The taxonomic positions of two Gram-staining-negative, psychrophilic bacteria, which were isolated from alpine glacier cryoconite and designated strains Cr4-12T and Cr4-35T, were investigated using a polyphasic approach. Both novel strains contained ubiquinone Q-8 as the sole quinone, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 as the dominant cellular fatty acids, putrescine and 2-hydroxyputrescine as the major polyamines, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genomic DNA G+C contents of strains Cr4-12T and Cr4-35T were 61.3 mol% and 60.7 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the two strains belonged to the genus Polaromonas . Although the 16S rRNA gene sequences of strains Cr4-12T and Cr4-35T were very similar (98.7 % sequence similarity), hybridizations indicated a DNA–DNA relatedness value of only 26.9 % between the two novel strains. In pairwise comparisons with the type strains of recognized Polaromonas species, strains Cr4-12T and Cr4-35T showed 16S rRNA gene sequence similarities of 96.4–98.5 % and 96.5–98.4 %, respectively. Based on the phenotypic and phylogenetic evidence and DNA–DNA relatedness data, strains Cr4-12T and Cr4-35T represent two novel species within the genus Polaromonas , for which the names Polaromonas glacialis sp. nov. and Polaromonas cryoconiti sp. nov., respectively, are proposed. The type strain of Polaromonas glacialis sp. nov. is Cr4-12T ( = DSM 24062T  = LMG 26049T  = KACC 15089T) and that of Polaromonas cryoconiti sp. nov. is Cr4-35T ( = DSM 24248T  = LMG 26050T  = KACC 15090T).


Sign in / Sign up

Export Citation Format

Share Document