scholarly journals Clostridium aestuarii sp. nov., from tidal flat sediment

2007 ◽  
Vol 57 (6) ◽  
pp. 1315-1317 ◽  
Author(s):  
Seil Kim ◽  
Hyunyoung Jeong ◽  
Jongsik Chun

A strictly anaerobic, halophilic, motile, endospore-forming, rod-shaped bacterium, designated strain HY-45-18T, was isolated from a sediment sample of a tidal flat in Korea. The isolate produced butyric acid, propionic acid, glycerol and H2 as fermentation end products from glucose. Strain HY-45-18T is halophilic as it was unable to grow in the absence of sea salts. A 16S rRNA gene sequence analysis clearly indicated that the tidal flat isolate is a member of cluster I of the order Clostridiales, which contains the type species of Clostridium, Clostridium butyricum. The closest phylogenetic neighbour of strain HY-45-18T was Clostridium ganghwense KCTC 5146T (96.5 % 16S rRNA gene sequence similarity). Several phenotypic characteristics can be readily used to differentiate the isolate from phylogenetically related clostridia. Therefore, strain HY-45-18T represents a novel species of the genus Clostridium, for which the name Clostridium aestuarii sp. nov. is proposed. The type strain is HY-45-18T (=IMSNU 40129T=KCTC 5147T=JCM 13194T).

2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 763-767 ◽  
Author(s):  
Rosica Valcheva ◽  
Maher Korakli ◽  
Bernard Onno ◽  
Hervé Prévost ◽  
Iskra Ivanova ◽  
...  

Twenty morphologically different strains were chosen from French wheat sourdough isolates. Cells were Gram-positive, non-spore-forming, non-motile rods. The isolates were identified using amplified-fragment length polymorphism, randomly amplified polymorphic DNA and 16S rRNA gene sequence analysis. All isolates were members of the genus Lactobacillus. They were identified as representing Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus spicheri and Lactobacillus sakei. However, two isolates (LP38T and LP39) could be clearly discriminated from recognized Lactobacillus species on the basis of genotyping methods. 16S rRNA gene sequence similarity and DNA–DNA relatedness data indicate that the two strains belong to a novel Lactobacillus species, for which the name Lactobacillus hammesii is proposed. The type strain is LP38T (=DSM 16381T=CIP 108387T=TMW 1.1236T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 795-799 ◽  
Author(s):  
Moriyuki Hamada ◽  
Chiaki Komukai ◽  
Tomohiko Tamura ◽  
Lyudmila I. Evtushenko ◽  
Natalia G. Vinokurova ◽  
...  

A non-motile and non-endospore-forming rod, strain NBRC 16403T, was isolated from the phyllosphere of a sedge (Carex sp.). 16S rRNA gene sequence analysis indicated that strain NBRC 16403T was closely related to Herbiconiux solani DSM 19813T (98.6 % 16S rRNA gene sequence similarity), Herbiconiux ginsengi wged11T (97.8 %) and Herbiconiux moechotypicola RB-62T (97.8 %). The peptidoglycan (B2γ type) contained d- and l-2,4-diaminobutyric acids, d-alanine, glycine and threo-3-hydroxyglutamic acid, which replaced glutamic acid almost completely. The predominant menaquinones were MK-10 and MK-11. The polar lipid pattern comprised diphosphatidylglycerol, phosphatidylglycerol, three glycolipids and minor amounts of other polar lipids. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0; no cyclohexyl-C17 : 0 was detected. The DNA G+C content was 71.0 mol%. The results of phylogenetic and DNA–DNA relatedness studies, along with phenotypic differences between strain NBRC 16403T and recognized members of the genus Herbiconiux, indicated that the isolate should be assigned to a novel species of the genus Herbiconiux, for which the name Herbiconiux flava sp. nov. is proposed. The type strain is NBRC 16403T ( = VKM Ac-2058T).


2010 ◽  
Vol 60 (1) ◽  
pp. 196-199 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile and pleomorphic bacterial strain, SMK-114T, which belongs to the class Alphaproteobacteria, was isolated from a tidal flat sample collected in Byunsan, Korea. Strain SMK-114T grew optimally at pH 7.0–8.0 and 25–30 °C and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain SMK-114T formed a cluster with Octadecabacter species, with which it exhibited 16S rRNA gene sequence similarity values of 95.2–95.4 %. This cluster was part of the clade comprising Thalassobius species with a bootstrap resampling value of 76.3 %. Strain SMK-114T exhibited 16S rRNA gene sequence similarity values of 95.1–96.3 % to members of the genus Thalassobius. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain SMK-114T is considered to represent a novel species in a new genus for which the name Gaetbulicola byunsanensis gen. nov., sp. nov. is proposed. The type strain of Gaetbulicola byunsanensis is SMK-114T (=KCTC 22632T =CCUG 57612T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


2010 ◽  
Vol 60 (3) ◽  
pp. 500-503 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Natsuko Suzuki ◽  
Masaaki Okamoto

Two anaerobic, pigmented, non-spore-forming, Gram-stain-negative, rod-shaped strains isolated from the human oral cavity, OMA31T and OMA130, were characterized by determining their phenotypic and biochemical features, cellular fatty acid profiles and phylogenetic positions based on 16S rRNA gene sequence analysis. 16S rRNA gene sequence analysis showed that the new isolates belonged to a single species of the genus Prevotella. The two isolates showed 100 % 16S rRNA gene sequence similarity with each other and were most closely related to Prevotella intermedia ATCC 25611T with 96.4 % 16S rRNA gene sequence similarity; the next most closely related strains to the isolates were Prevotella pallens AHN 10371T (96.1 %) and Prevotella falsenii JCM 15124T (95.3 %). Phenotypic and biochemical characteristics of the isolates were the same as those of P. intermedia JCM 12248T, P. falsenii JCM 15124T and Prevotella nigrescens JCM 12250T. The isolates could be differentiated from P. pallens JCM 11140T by mannose fermentation and α-fucosidase activity. Conventional biochemical tests were unable to differentiate the new isolates from P. intermedia, P. falsenii and P. nigrescens. However, hsp60 gene sequence analysis suggested that strain OMA31T was not a representative of P. intermedia, P. pallens, P. falsenii or P. nigrescens. Based on these data, a novel species of the genus Prevotella, Prevotella aurantiaca sp. nov., is proposed, with OMA31T (=JCM 15754T=CCUG 57723T) as the type strain.


2011 ◽  
Vol 61 (11) ◽  
pp. 2606-2609 ◽  
Author(s):  
Dong-Shan An ◽  
Liang Wang ◽  
Minseok S. Kim ◽  
Heon-Meen Bae ◽  
Sung-Taik Lee ◽  
...  

A Gram-reaction-positive, non-motile, non-spore-forming, aerobic rod, designated BXN5-15T, was isolated from the soil of a ginseng field on Baekdu Mountain in China. Strain BXN5-15T grew optimally at 30 °C and pH 6.0–7.0 in the absence of NaCl on R2A agar. Strain BXN5-15T displayed β-glucosidase activity, which allowed it to transform ginsenoside Rb1 (one of the dominant active components of ginseng) via Rd to minor ginsenoside F2. On the basis of 16S rRNA gene sequence analysis, strain BXN5-15T was shown to belong to the genus Solirubrobacter. The closest phylogenetic relatives were Solirubrobacter soli Gsoil 355T (98.4 % 16S rRNA gene sequence similarity) and Solirubrobacter pauli B33D1T (96.4 %). Lower sequence similarities (<96.0 %) were found with all of the other recognized members of the order Solirubrobacterales. The predominant quinone was MK-7(H4). The major fatty acids (>10 %) were C18 : 1ω9c, iso-C16 : 0 and C18 : 3ω6,9,12c. The G+C content of the genomic DNA was 70.6 mol%. DNA−DNA relatedness between strain BXN5-15T and S. soli KCTC 12628T was 23.3 %. On the basis of genotypic, phenotypic and chemotaxonomic data, strain BXN5-15T represents a novel species within the genus Solirubrobacter, for which the name Solirubrobacter ginsenosidimutans sp. nov. is proposed. The type strain is BXN5-15T ( = KACC 20671T  = LMG 24459T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2226-2230 ◽  
Author(s):  
Jing Zhang ◽  
Shu-Kun Tang ◽  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hans-Peter Klenk ◽  
...  

A thermophilic strain, designated YIM 10002T, was isolated from a soil sample of Big Empty Volcano in Tengchong county, Yunnan province, south-west China, and a polyphasic approach was used to investigate its taxonomic position. Strain YIM 10002T formed endospores on both aerial and substrate mycelia. Whole-cell hydrolysates contained meso-diaminopimelic acid, ribose, xylose and glucose. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant menaquinone was MK-9. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides, together with some unknown phospholipids. The G+C content of its genomic DNA was 48.6 mol%. All of these chemotaxonomic data together with morphological characters consistently assigned strain YIM 10002T to the genus Laceyella. 16S rRNA gene sequence analysis showed that strain YIM 10002T was most closely related to Laceyella sacchari KCTC 9790T and Laceyella putida KCTC 3666T (99.9 and 98.0 % 16S rRNA gene sequence similarity, respectively). However, strain YIM 10002T showed relatively low DNA–DNA relatedness (34.0 and 39.0 %, respectively) with the above strains. Therefore, strain YIM 10002T represents a novel species of the genus Laceyella, for which the name Laceyella tengchongensis sp. nov. is proposed. The type strain is YIM 10002T (=DSM 45262T =CCTCC AA 208050T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1397-1401 ◽  
Author(s):  
Qi Zhao ◽  
Yu Bai ◽  
Gaosen Zhang ◽  
Shan Zhu ◽  
Hongmei Sheng ◽  
...  

Strain TSBY 67T was isolated during a study on the phylogenetic diversity of culturable bacteria from alpine permafrost in Tianshan Mountains, China. On the basis of 16S rRNA gene sequence analysis, strain TSBY 67T was closely related to members of the genus Chryseobacterium and exhibited 96.8 % 16S rRNA gene sequence similarity to Chryseobacterium aquaticum 10-46T and Chryseobacterium soldanellicola PSD 1-4T. Strain TSBY 67T grew aerobically, at 4–37 °C, with 0–2 % NaCl and at pH 6–8. Cells were Gram-staining negative, non-motile and non-spore-forming rods. The dominant cellular fatty acids were iso-C15 : 0 (26.9 %), iso-C17 : 0 3-OH (16.1 %) and iso-C17 : 1ω9c (15.4 %). The G+C content of the DNA was 33.5 mol%. Strain TSBY 67T was distinguishable from its closest phylogenetic neighbours by a combination of phenotypic characteristics. Therefore, strain TSBY 67T represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium xinjiangense sp. nov. is proposed. The type strain is TSBY 67T ( = NRRL B-51308T = CCTCC AB 207183T).


Sign in / Sign up

Export Citation Format

Share Document