scholarly journals Taxonomic description and genome sequence of Rheinheimera mesophila sp. nov., isolated from an industrial waste site

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3666-3673 ◽  
Author(s):  
Anand Kumar ◽  
Abhay Bajaj ◽  
Rajendran Mathan Kumar ◽  
Gurwinder Kaur ◽  
Navjot Kaur ◽  
...  

A novel Gram-staining-negative gammaproteobacterium, designated IITR-13T, was isolated from a pesticide-contaminated soil and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, the strain showed the closest similarity (98.7 %) to Rheinheimera tangshanensis JA3-B52T followed by Rheinheimera texasensis A62-14BT (97.7 %) and Rheinheimera soli BD-d46T (97.3 %). The 16S rRNA gene sequence similarity of the novel strain to other members of the genus Rheinheimera was < 97.3 %. However, DNA–DNA hybridization between strain IITR-13T and the type strains of R. tangshanensis, R. texasensis and R. soli was 47.5 ± 0.6, 42.4 ± 0.4 and 39.8 ± 0.3 %, respectively; these values are less than 70 %, a threshold value for delineation of a novel species. The strain had C12 : 0 3-OH, C16 : 0, C17 : 1ω8c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and C18 : 1ω6c as the major fatty acids. The major isoprenoid quinones detected for strain IITR-13T were ubiquinone Q-8 and menaquinone MK-7.The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and seven unknown phospholipids. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the novel strain should be assigned to a novel species, for which the name Rheinheimera mesophila sp. nov. is proposed, with the type strain IITR-13T ( = MTCC 12064T = DSM 29723T). Also, we report the draft genome sequence of Rheinheimera mesophila IITR-13T; the draft genome sequence includes 3 749 903 bases and comprises 3449 predicted coding sequences, with a G+C content of 47.8 %. It consists of 102 contigs (>1000 bp).

2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Regina Rettenmaier ◽  
Klaus Neuhaus ◽  
Wolfgang Liebl ◽  
Vladimir V. Zverlov

Strain GS7-6-2 was isolated from a mesophilically operated biogas fermenter. The 16S rRNA gene sequence (93.27% identity to Anaerosphaera aminiphila WN036T) indicated that GS7-6-2 represents a putative novel species within the genus Anaerosphaera (family Peptoniphilaceae).


2010 ◽  
Vol 60 (2) ◽  
pp. 422-428 ◽  
Author(s):  
P. Saha ◽  
S. Krishnamurthi ◽  
A. Bhattacharya ◽  
R. Sharma ◽  
T. Chakrabarti

A novel facultatively anaerobic strain, designated GPTSA 19T, was isolated from a warm spring and characterized using a polyphasic approach. The strain behaved as Gram-negative in the Gram staining procedure but showed a Gram-positive reaction in the aminopeptidase test. The novel strain was a mesophilic rod with ellipsoidal endospores. On the basis of 16S rRNA gene sequence analysis, the strain showed closest similarity (96.0 %) with Paenibacillus motobuensis MC10T. The gene sequence similarity of the novel strain with other species of the genus Paenibacillus was <95.8 %. The novel strain also had PAEN 515F and 682F signature sequence stretches in the 16S rRNA gene that are usually found in most species of the genus Paenibacillus. The strain possessed anteiso-C15 : 0 as the major fatty acid and MK-7 as the predominant menaquinone. Polar lipids included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), six unknown phospholipids (PLs), one aminophospholipid (PN), three glycolipids (GLs), two aminolipids (ALs), one aminophosphoglycolipid (APGL) and three unknown lipids (ULs). The polar lipid profile of the novel strain, especially as regards ALs, GLs and PLs, distinguished it from the recognized type species of the genus Paenibacillus, Paenibacillus polymyxa, as well as from its closest relative P. motobuensis. Based on phenotypic and chemotaxonomic characteristics and analysis of the 16S rRNA gene sequence, the new strain merits the rank of a novel genus for which the name Fontibacillus gen. nov. is proposed. The type species of the new genus is Fontibacillus aquaticus gen. nov., sp. nov. with the type strain GPTSA 19T (=MTCC 7155T=DSM 17643T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1901-1905 ◽  
Author(s):  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hong-Yu Liu ◽  
Yue-Qin Zhang ◽  
Li-Hua Xu ◽  
...  

A moderately halophilic bacterium, strain YIM 70202T, was isolated from a desert soil sample collected from Egypt and was subjected to a taxonomic investigation. In a phylogenetic dendrogram based on 16S rRNA gene sequence analysis, strain YIM 70202T was affiliated to the Salinicoccus clade, showing 94.5–96.8 % 16S rRNA gene sequence similarity to the recognized species of the genus Salinicoccus, in which Salinicoccus roseus CCM 3516T was the nearest neighbour. The DNA–DNA relatedness value of the novel isolate with S. roseus CCM 3516T was 12.7 %. The novel isolate grew at temperatures between 4 and 45 °C and at pH values ranging from 7.0 to 11.0, with an optimum of 30 °C and pH 8.0–9.0, respectively. Strain YIM 70202T grew optimally in the presence of 10 % NaCl (w/v) and growth was observed at NaCl concentrations in the range 1–25 % (w/v). Chemotaxonomic data revealed that strain YIM 70202T contained MK-6 as the predominant respiratory quinone, possessed l-Lys–Gly5 as the cell-wall peptidoglycan, had phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid as the polar lipids and contained i-C15 : 0 and ai-C15 : 0 as the predominant fatty acids. The DNA G+C content was 49.7 mol%. The biochemical and chemotaxonomic properties demonstrate that strain YIM 70202T represents a novel species of the genus Salinicoccus. The name Salinicoccus luteus sp. nov. is proposed with strain YIM 70202T (=CGMCC 1.6511T=KCTC 3941T) as the type strain.


2010 ◽  
Vol 60 (4) ◽  
pp. 938-943 ◽  
Author(s):  
Eun Ju Choi ◽  
Hak Cheol Kwon ◽  
Young Chang Sohn ◽  
Hyun Ok Yang

A novel marine bacterium, strain KMD 001T, was isolated from the starfish Asterias amurensis, which inhabits the East Sea of Korea. Strain KMD 001T was aerobic, light-yellow pigmented and Gram-stain-negative. Analyses of the 16S rRNA gene sequence revealed that strain KMD 001T represents a novel lineage within the class Gammaproteobacteria. Strain KMD 001T is closely related to the genera Endozoicomonas and Zooshikella, which belong to the family Hahellaceae and to the order Oceanospirillales. The 16S rRNA gene sequence of strain KMD 001T shows similarities of approximately 91.8–94.6 % with the above-mentioned genera. The DNA G+C content of KMD 001T is 47.6 mol%. It contains Q-9 as the major isoprenoid quinone. The predominant fatty acids were determined to be anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0. Strain KMD 001T should be assigned to a novel bacterial genus within the class Gammaproteobacteria based on its phylogenetic, chemotaxonomic and phenotypic characteristics. The name Kistimonas asteriae gen. nov., sp. nov. is proposed. The type strain is KMD 001T (=KCCM 90076T =JCM 15607T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2765-2770 ◽  
Author(s):  
Preeti Chaturvedi ◽  
S. Shivaji

Strain HHS 31T, a Gram-positive, motile, rod-shaped, non-spore-forming, alkaliphilic bacterium, was isolated from the melt water of a glacier. Phenotypic and chemotaxonomic characteristics indicate that strain HHS 31T is related to species of the genus Exiguobacterium. The 16S rRNA gene sequence similarities between HHS 31T and strains of known species confirm that it is closely related to members of the genus Exiguobacterium (93–99 %) and that it exhibits >97 % similarity with Exiguobacterium acetylicum DSM 20416T (98.9 %), Exiguobacterium antarcticum DSM 14480T (98.0 %), Exiguobacterium oxidotolerans JCM 12280T (97.9 %) and Exiguobacterium undae DSM 14481T (97.4 %). Phylogenetic analysis based on the 16S rRNA gene sequence further confirms the affiliation of HHS 31T with the genus Exiguobacterium. However, the levels of DNA–DNA relatedness between HHS 31T and E. oxidotolerans JCM 12280T, E. acetylicum DSM 20416T, E. undae DSM 14481T and E. antarcticum DSM 14480T are 50, 63, 67 and 28 %, respectively. Strain HHS 31T also differs from these four closely related species in terms of a number of phenotypic traits. The phenotypic, chemotaxonomic and phylogenetic data suggest that HHS 31T merits the status of a novel species, for which the name Exiguobacterium indicum sp. nov. is proposed. The type strain is HHS 31T (=LMG 23471T=IAM 15368T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1985-1989 ◽  
Author(s):  
Angel Valverde ◽  
Encarna Velázquez ◽  
Félix Fernández-Santos ◽  
Nieves Vizcaíno ◽  
Raúl Rivas ◽  
...  

Bacterial strain PETP02T was isolated from nodules of Trifolium pratense growing in a Spanish soil. Phylogenetic analysis of the 16S rRNA gene sequence showed that this strain represents a member of the genus Phyllobacterium. However, divergence found with the 16S rRNA gene sequence of the single recognized species of this genus, Phyllobacterium myrsinacearum, indicated that strain PETP02T belongs to a different species. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain represents a novel species of the genus Phyllobacterium, for which the name Phyllobacterium trifolii sp. nov. is proposed. The type strain is PETP02T (=LMG 22712T=CECT 7015T). This strain was strictly aerobic and used several carbohydrates as carbon source. It was not able to reduce nitrate. Aesculin hydrolysis was negative. It did not produce urease, arginine dihydrolase, gelatinase or β-galactosidase. The DNA G+C content was 56·4 mol%. The nodD gene of this strain showed a sequence closely related to those of strains able to nodulate Lupinus. Infectivity tests showed that this strain is able to produce nodules in both Trifolium repens and Lupinus albus.


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 745-753 ◽  
Author(s):  
Sakshi Sood ◽  
Ram Prasad Awal ◽  
Joachim Wink ◽  
Kathrin I. Mohr ◽  
Manfred Rohde ◽  
...  

A novel myxobacterium, MCy1366T (Ar1733), was isolated in 1981 from a soil sample collected from a region near Tokyo, Japan. It displayed general myxobacterial features like Gram-negative-staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics such as cephalosporin C, kanamycin, gentamicin, hygromycin B, polymyxin and bacitracin, and the key fatty acids of whole cell hydrolysates were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 0 2-OH. The genomic DNA G+C content of the novel strain was 65.6 mol%. The 16S rRNA gene sequence showed highest similarity (97.60 %) to ‘Stigmatella koreensis’ strain KYC-1019 (GenBank accession no. EF112185). Phylogenetic analysis based on 16S rRNA gene sequences and MALDI-TOF MS data revealed a novel branch in the family Myxococcaceae . DNA–DNA hybridization showed only 28 % relatedness between the novel strain and the closest recognized species, Corallococcus exiguus DSM 14696T (97 % 16S rRNA gene sequence similarity). A recent isolate from a soil sample collected in Switzerland, MCy10622, displayed 99.9 % 16S rRNA gene sequence similarity with strain MCy1366T and showed almost the same characteristics. Since some morphological features like fruiting-body-like aggregates were barely reproducible in the type strain, the newly isolated strain, MCy10622, was also intensively studied. On the basis of a comprehensive taxonomic study, we propose a novel genus and species, Aggregicoccus edonensis gen. nov., sp. nov., for strains MCy1366T and MCy10622. The type strain of the type species is MCy1366T ( = DSM 27872T = NCCB 100468T).


Sign in / Sign up

Export Citation Format

Share Document