scholarly journals Paracoccus sediminilitoris sp. nov., isolated from a tidal flat sediment

2019 ◽  
Vol 69 (4) ◽  
pp. 1035-1040 ◽  
Author(s):  
Yuli Wei ◽  
Junwei Cao ◽  
Huimin Yao ◽  
Haiyan Mao ◽  
Kelei Zhu ◽  
...  

A novel marine Gram-stain-negative, non-spore-forming, motile, aerobic, coccoid or ovoid bacterium, designated as strain DSL-16T, was isolated from a tidal flat sediment on the East China Sea and characterized phylogenetically and phenotypically. Optimal growth of the strain occurred at 35 °C (range 4–40 °C), at pH 6 (range 5–11) and with 4 % (w/v) NaCl (range 1–14 %). The nearest phylogenetic neighbour was Paracoccus seriniphilus DSM 14827T (98.2 % 16S rRNA gene sequence similarity). The digital DNA–DNA hybridization value between strain DSL-16T and P. seriniphilus DSM 14827T was 19.5±2.2 %. The average nucleotide identity value between strain DSL-16T and P. seriniphilus DSM 14827T was 83.6 %. The sole respiratory ubiquinone was Q-10. The major polar lipids were phosphatidylmonomethylethanolamine (PME), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), diphosphatidyglycerol (DPG) and glycolipid (GL). The predominant cellular fatty acids of strain DSL-16T were C18 : 1ω7c, C18 : 0 and 11-methyl C18 : 1ω7c. The G+C content of the genomic DNA was 64.5 mol%. The combined genotypic and phenotypic data indicated that strain DSL-16T represents a novel species of the genus Paracoccus , for which the name Paracoccus sediminilitoris sp. nov. is proposed. The type strain is DSL-16T (=KCTC 62644T=MCCC 1K03534T).

2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1001-1006 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped bacterial strain, BB-Mw22T, was isolated from a tidal flat sediment of the South Sea in South Korea. It grew optimally at 30–37 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain BB-Mw22T belonged to the genus Kangiella and the cluster comprising Kangiella species and strain BB-Mw22T was clearly separated from other taxa. Strain BB-Mw22T exhibited 95.3–98.7 % 16S rRNA gene sequence similarity to the type strains of recognized Kangiella species. Strain BB-Mw22T contained Q-8 as the predominant ubiquionone and iso-C15 : 0 and iso-C11 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and one unidentified aminolipid. The DNA G+C content of strain BB-Mw22T was 48.9 mol%, and its mean DNA–DNA hybridization values with Kangiella geojedonensis YCS-5T, Kangiella japonica JCM 16211T and Kangiella taiwanensis JCM 17727T were 14–28 %. Phylogenetic and genetic distinctiveness and differential phenotypic properties revealed that strain BB-Mw22T is distinguishable from all recognized Kangiella species. On the basis of the data presented, strain BB-Mw22T is considered to represent a novel species of the genus Kangiella , for which the name Kangiella sediminilitoris sp. nov. is proposed. The type strain is BB-Mw22T ( = KCTC 23892T  = CCUG 62217T).


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2969-2974 ◽  
Author(s):  
Sooyeon Park ◽  
Sung-Min Won ◽  
Hyangmi Kim ◽  
Doo-Sang Park ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, BS-B2T, which was isolated from a tidal flat sediment at Boseong in South Korea, was characterized taxonomically. Strain BS-B2T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The novel strain exhibited highest 16S rRNA gene sequence similarity (97.4 %) to Marivita geojedonensis DPG-138T. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain BS-B2T is closely related to Primorskyibacter sedentarius KMM 9018T, showing 96.5 % sequence similarity. Strain BS-B2T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the predominant fatty acid. The polar lipid profile of strain BS-B2T comprised phosphatidylcholine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid as major components, and differentiated it from the type strains of P. sedentarius and M. geojedonensis . The DNA G+C content of strain BS-B2T was 62.2 mol%. Differential phenotypic properties, together with the phylogenetic and chemotaxonomic data, demonstrated that strain BS-B2T can be distinguished from phylogenetically related genera as well as P. sedentarius and M. geojedonensis . On the basis of the data presented, strain BS-B2T is considered to represent a novel species of a new genus, for which the name Aestuariivita boseongensis gen. nov., sp. nov. is proposed. The type strain of Aestuariivita boseongensis is BS-B2T ( = KCTC 42052T = CECT 8532T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 648-653 ◽  
Author(s):  
Hyeonji Kang ◽  
Veeraya Weerawongwiwat ◽  
Min Young Jung ◽  
Soon Chul Myung ◽  
Wonyong Kim

A Gram-stain-negative, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated CAU 1002T, was isolated from a tidal flat sediment and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1002T grew optimally at 30 °C and pH 7.5. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1002T formed a distinct lineage within the genus Algoriphagus and was most closely related to Algoriphagus lutimaris KCTC 22630T and Algoriphagus halophilus KCTC 12051T (97.75 and 97.74 % 16S rRNA gene sequence similarity, respectively). The strain contained MK-7 as the major isoprenoid quinone and iso-C15 : 0 and C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3) as the major fatty acids. The cell-wall peptidoglycan of strain CAU 1002T contained meso-diaminopimelic acids. The major whole-cell sugars were glucose, arabinose, sucrose, and ribose. The polar lipid profile was composed of phosphatidylethanolamine, five unidentified aminolipids, one unidentified aminophospholipid, one unidentified phospholipid, one unidentified aminoglycolipid, one unidentified glycolipid and twelve unidentified lipids. The DNA G+C content of strain CAU 1002T was 38.0 mol%. On the basis of phylogenetic inference, phenotypic, chemotaxonomic and genotypic data, strain CAU 1002T should be classified into the genus Algoriphagus as a member of a novel species, for which the name Algoriphagus chungangensis sp. nov. is proposed. The type strain is CAU 1002T ( = KCTC 23759T = CCUG 61890T). The description of the genus Algoriphagus is emended.


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1027-1031 ◽  
Author(s):  
Soo-Young Lee ◽  
Sooyeon Park ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-stain-negative, aerobic, non-flagellated, non-gliding and short rod- or rod-shaped bacterial strain, designated BB-My20T, was isolated from tidal flat sediment taken from the southern coast of Korea. Strain BB-My20T grew optimally at 37 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A phylogenetic tree based on 16S rRNA gene sequences showed that strain BB-My20T fell within the clade comprising Salinimicrobium species, joining Salinimicrobium catena HY1T, with which it had a 16S rRNA gene sequence similarity value of 97.4 %. It exhibited 95.4–96.9 % sequence similarity to the type strains of other members of the genus Salinimicrobium . Strain BB-My20T contained MK-6 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain BB-My20T and S. catena JCM 14015T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain BB-My20T was 45.1 mol% and its mean DNA–DNA relatedness value with S. catena JCM 14015T was 4.5 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain BB-My20T can be distinguished from the four recognized species of the genus Salinimicrobium . On the basis of the data presented, strain BB-My20T is considered to represent a novel species of the genus Salinimicrobium , for which the name Salinimicrobium gaetbulicola sp. nov. is proposed; the type strain is BB-My20T ( = KCTC 23579T = CCUG 60898T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4184-4190 ◽  
Author(s):  
Yong-Taek Jung ◽  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, coccoid- or oval-shaped bacterial strain, designated S-5T, belonging to the class Alphaproteobacteria , was isolated from a tidal flat sediment of the Yellow Sea, Korea and was subjected to a polyphasic taxonomic study. Strain S-5T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. Neighbour-joining analysis based on 16S rRNA gene sequences showed that strain S-5T fell within the clade comprising the species of the genus Erythrobacter , clustering with the type strains of Erythrobacter pelagi , Erythrobacter citreus and Erythrobacter seohaensis with which it exhibited the highest 16S rRNA gene sequence similarity (96.0–96.7 %). The DNA G+C content was 66.0 mol%. Strain S-5T contained Q-10 as the predominant ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C17 : 1ω6c as the major fatty acids. The major polar lipids were sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, an unidentified glycolipid and two unidentified lipids. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, demonstrated that strain S-5T is distinguishable from other species of the genus Erythrobacter . On the basis of the data presented, strain S-5T is considered to represent a novel species of the genus Erythrobacter , for which the name Erythrobacter lutimaris sp. nov. is proposed. The type strain is S-5T ( = KCTC 42109T = CECT 8624T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 327-331 ◽  
Author(s):  
Ju-Hee Cha ◽  
Chang-Jun Cha

A Gram-stain-positive, non-motile, aerobic actinobacterium, designated strain CJ10T, was isolated from tidal flat sediment from the Yellow Sea in South Korea. Strain CJ10T grew on tryptic soy agar in the presence of 0–4 % (w/v) NaCl (optimum growth in the absence of NaCl) and at pH 6–11 (optimum pH 9). On the basis of 16S rRNA gene sequence analysis, strain CJ10T belonged to the genus Gordonia and showed the highest sequence similarity to Gordonia hirsuta DSM 44140T (97.9 %) and Gordonia hydrophobica DSM 44015T (97.6 %). DNA–DNA relatedness levels of strain CJ10T were 47.4 % (CJ10T as probe) and 42.2 % ( G. hirsuta DSM 44140T as probe) to G. hirsuta DSM 44140T and 8.6 % (CJ10T as probe) and 9.3 % ( G. hydrophobica DSM 44015T as probe) to G. hydrophobica DSM 44015T. The major isoprenoid quinone was MK-9(H2). The polar lipid profile of strain CJ10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant cellular fatty acids were C18 : 1ω9c (38.0 %), C16 : 0 (30.1 %) and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c; 17.4 %). The DNA G+C content was 67.7 mol%. Therefore, the results from our polyphasic taxonomic study suggest that strain CJ10T represents a novel species in the genus Gordonia , for which the name Gordonia alkaliphila sp. nov. is proposed; the type strain is CJ10T ( = KACC 16561T  = JCM 18077T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3513-3519 ◽  
Author(s):  
Learn-Han Lee ◽  
Adzzie-Shazleen Azman ◽  
Nurullhudda Zainal ◽  
Shu-Kee Eng ◽  
Nurul-Syakima Ab Mutalib ◽  
...  

Strain MUSC 115T was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115T was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium . The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15 : 0 and anteiso-C17 : 0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115T showed the highest sequence similarity to Microbacterium immunditiarum SK 18T (98.1 %), M. ulmi XIL02T (97.8 %) and M. arborescens DSM 20754T (97.5 %) and lower sequence similarity to strains of other species of the genus Microbacterium . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 24 %) between strain MUSC 115T and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115T represented a unique DNA profile. The DNA G+C content determined was 70.9±0.7 mol%, which is lower than that of M. immunditiarum SK 18T. Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115T represents a novel species of the genus Microbacterium , for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115T ( = MCCC 1K00251T = DSM 28240T = NBRC 110089T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 934-938 ◽  
Author(s):  
Wen-Ming Chen ◽  
Rey-Chang Chang ◽  
Chih-Yu Cheng ◽  
Yu-Wen Shiau ◽  
Shih-Yi Sheu

A novel bacterium, designated strain JchiT, was isolated from soil in Taiwan and characterized using a polyphasic approach. Cells of strain JchiT were aerobic, Gram-stain-negative, motile and rod-shaped. They contained poly-β-hydroxybutyrate granules and formed dark-yellow colonies. Growth occurred at 20–37 °C (optimum between 25 and 30 °C), at pH 6.0–8.0 (optimum between pH 7.0 and pH 8.0) and with 0–2 % NaCl (optimum between 0 and 1 %). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JchiT belonged to the genus Jeongeupia and that its closest neighbour was Jeongeupia naejangsanensis BIO-TAS4-2T (98.0 % sequence similarity). The major fatty acids (>10 %) of strain JchiT were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major cellular hydroxy fatty acid was C12 : 0 3-OH. The isoprenoid quinone was Q-8 and the genomic DNA G+C content was 66.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine and two unidentified phospholipids. The DNA–DNA relatedness value between strain JchiT and J. naejangsanensis BIO-TAS4-2T was about 41.0 %. On the basis of the genotypic and phenotypic data, strain JchiT represents a novel species in the genus Jeongeupia , for which the name Jeongeupia chitinilytica sp. nov. is proposed. The type strain is JchiT ( = BCRC 80367T  = KCTC 23701T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


Sign in / Sign up

Export Citation Format

Share Document