scholarly journals Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

2020 ◽  
Vol 70 (11) ◽  
pp. 5972-6016 ◽  
Author(s):  
David W Waite ◽  
Maria Chuvochina ◽  
Claus Pelikan ◽  
Donovan H Parks ◽  
Pelin Yilmaz ◽  
...  

The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is frequently not recovered as a monophyletic unit in phylogenetic analyses. Indeed, one branch of the class Deltaproteobacteria encompassing Bdellovibrio-like predators was recently reclassified into a separate proteobacterial class, the Oligoflexia . Here we systematically explore the phylogeny of taxa currently assigned to these classes using 120 conserved single-copy marker genes as well as rRNA genes. The overwhelming majority of markers reject the inclusion of the classes Deltaproteobacteria and Oligoflexia in the phylum Proteobacteria . Instead, the great majority of currently recognized members of the class Deltaproteobacteria are better classified into four novel phylum-level lineages. We propose the names Desulfobacterota phyl. nov. and Myxococcota phyl. nov. for two of these phyla, based on the oldest validly published names in each lineage, and retain the placeholder name SAR324 for the third phylum pending formal description of type material. Members of the class Oligoflexia represent a separate phylum for which we propose the name Bdellovibrionota phyl. nov. based on priority in the literature and general recognition of the genus Bdellovibrio. Desulfobacterota phyl. nov. includes the taxa previously classified in the phylum Thermodesulfobacteria , and these reclassifications imply that the ability of sulphate reduction was vertically inherited in the Thermodesulfobacteria rather than laterally acquired as previously inferred. Our analysis also indicates the independent acquisition of predatory behaviour in the phyla Myxococcota and Bdellovibrionota, which is consistent with their distinct modes of action. This work represents a stable reclassification of one of the most taxonomically challenging areas of the bacterial tree and provides a robust framework for future ecological and systematic studies.

Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT486T, isolated from soil sampled in a maize field in Taiwan. Cells of strain CC-CFT486T were short rods, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT486T associated with Aeromicrobium panacisoli (97.0 % sequence identity), Aeromicrobium lacus (97.0 %), Aeromicrobium erythreum (96.8 %) and Aeromicrobium alkaliterrae (96.8 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) values were 70.6–77.8 % (n=11) compared within the type strains of the genus Aeromicrobium . Strain CC-CFT486T contained C16 : 0, C17 : 0, C17 : 1  ω8c and C18 : 1  ω9c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified aminophospholipids and three unknown phospholipids. The cell wall peptidoglycan of strains CC-CFT486T contained ll-diaminopimelic acid (ll-DAP) and the major polyamine was spermidine. The DNA G+C content was 70.6 mol% and the predominant quinone was menaquinone 9 (MK-9). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence and ANI analyses, strain CC-CFT486T is proposed to represent a novel Aeromicrobium species, for which the name Aeromicrobium terrae sp. nov. (type strain CC-CFT486T=BCRC 81217T=JCM 33499T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5725-5733 ◽  
Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT480T, isolated from soil sampled in a maize field in Taiwan, ROC. Cells of strain CC-CFT480T were rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 3 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT480T associated with Cerasibacillus quisquiliarum (97.2 % sequence identity), Virgibacillus soli (95.7 %), Virgibacillus carmonensis (95.4 %) and Virgibacillus byunsanensis (95.2 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain CC-CFT480T and C. quisquiliarum were 74.2 and 20.1 %, respectively. Strain CC-CFT480T contained iso-C15:0, C16:1 ω7c alcohol and iso-C17:1 ω10c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown aminophospholipids, one uncharacterized aminophospholipid and two unknown phospholipids. The major polyamine was spermidine. The DNA G+C content was 34.8 mol% and the predominant quinone was menaquinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT480T is proposed to represent a novel Cerasibacillus species, for which the name Cerasibacillus terrae sp. nov. (type strain CC-CFT480T=BCRC 81216T=JCM 33498T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3731-3739 ◽  
Author(s):  
Shih-Yao Lin ◽  
Wen-Ming Chen ◽  
Guan-Hua Huang ◽  
Asif Hameed ◽  
Chun-Tse Chang ◽  
...  

A bacterial strain CC-CTC003T was isolated from a synthetic wooden board. Cells of strain CC-CTC003T were Gram-stain-negative, rod-shaped, motile by gliding and formed yellow colonies. Optimal growth occurred at 25 °C, pH 7 and in the presence of 1 % NaCl. The phylogenetic analyses based on 16S rRNA genes revealed that strain CC-CTC003T belonged to the genus Flavobacterium and was most closely related to Flavobacterium cerinum (95.3 % sequence identity), Flavobacterium maris (94.9 % sequence identity), Flavobacterium qiangtangense (94.8 %) and Flavobacterium subsaxonicum (94.7 %) and had less than 94.7 % sequence similarity to other members of the genus. Average nucleotide identity (ANI) values between strain CC-CTC003T and the type strains of other closely related species were 70.1–74.1 %. The digital DNA–DNA hybridization (dDDH) with F. cerinum was 19.4 %. Strain CC-CTC003T contained C15 : 0, iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, summed feature 3 (C16 : 1  ω6c / C16 : 1  ω7c) and summed feature 9 (C16 : 0 10-methyl / iso-C17 : 1  ω9c) as the predominant fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, four uncharacterized aminophospholipids, two aminolipids and one unidentified glycolipid. The major polyamine was sym-homospermidine and contained MK-6 as major isoprenoid quinone. The DNA G+C content of the genomic DNA was 39.2 mol%. On the basis of the phylogenetic inference and phenotypic data, strain CC-CTC003T should be classified as a novel species, for which the name Flavobacterium supellecticarium sp. nov. is proposed. The type strain is CC-CTC003T (=BCRC 81146T=JCM 32838T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6257-6265 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim

A marine alphaproteobacterium, designated as strain GH3-10T, was isolated from the rhizosphere mud of a halophyte (Suaeda japonica) collected at the seashore of Gangwha Island, Republic of Korea. The isolate was found to be Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short rods and produced orange-coloured colonies. The 16S rRNA gene- and whole genome-based phylogenetic analyses exhibited that strain GH3-10T belonged to the genus Aurantiacibacter and was most closely related to Aurantiacibacter atlanticus s21-N3T (98.7 % 16S rRNA gene sequence similarity) and Aurantiacibacter marinus KCTC 23554T (98.4 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unidentified lipid. The major fatty acids were C18 : 1  ω7c, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C18 : 1  ω7c 10-methyl. The DNA G+C content was 61.3 mol% (by genome). Average nucleotide identity and DNA–DNA relatedness values between the isolate and its phylogenetically closest relatives, together with phenotypic distinctness warranted the taxonomic description of a new species. On the basis of data obtained by a polyphasic approach, strain GH3-10T (=KCTC 62379T=JCM 32444T) represents a novel species of the genus Aurantiacibacter , for which the name Aurantiacibacter rhizosphaerae sp. nov. is proposed. According to phylogenetic coherence based on 16S rRNA genes and core genomes, it is also proposed that Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 be transferred to Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively.


2020 ◽  
Vol 70 (12) ◽  
pp. 6373-6380 ◽  
Author(s):  
Galina Dubinina ◽  
Natalia Leshcheva ◽  
Natalia Mikheeva ◽  
Stefan Spring ◽  
Meina Neumann-Schaal ◽  
...  

A novel obligately anaerobic spirochete strain K2T was isolated from bottom marine sediments at Crater Bay of Yankicha Island (Kuril Islands, Russia). Strain K2T had helical shape and Gram-negatively stained. The optimal growth conditions were as follows: the optimum temperature was 28–30 °C with range 5–34 °C; optimal pH at 7.0–7.5 with range of 6.8–8.5; NaCl optimum at 3–3.5 % (w/v) and range of 1–7 % (w/v). Strain K2T was catalase- and oxidase-negative. Glucose fermentation products were acetate, lactate, ethanol, CO2, H2. The major fatty acids were C14 : 0, iso-C13 : 0, iso-C15:0, C14 : 0 DMA, iso-C15 : 0 DMA. The G+C content of genomic DNA was 43.2 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain K2T belonged to the genus Oceanispirochaeta of the family Spirochaetaceae . The 16S rRNA gene sequence similarity of strain K2T and O. litoralis DSM 2029T and O. sediminicola DSM 104770T was 96 and 94 %, respectively. Based on the results of our study, we propose the name Oceanispirochaeta crateris sp. nov.; type strain K2T (=DSM 16308T=VKM B-3266T). Also, the taxonomic status of Spirochaeta perfilevii was revised: 16S rRNA genes sequence showed less than 89 % similarity to nearest phylogenetic neighbours. Therefore, we proposed to separate this species into a novel genus Thiospirochaeta - T. perfilievii gen. nov., comb. nov.


Author(s):  
Xiaoying Liu ◽  
Jessica L. Sutter ◽  
Jacobo de la Cuesta-Zuluaga ◽  
Jillian L. Waters ◽  
Nicholas D. Youngblut ◽  
...  

The genera Catabacter (family ‘Catabacteraceae’) and Christensenella (family Christensenellaceae ) are close relatives within the phylum Firmicutes . Members of these genera are strictly anaerobic, non-spore-forming and short straight rods with diverse phenotypes. Phylogenetic analysis of 16S rRNA genes suggest that Catabacter splits Christensenella into a polyphyletic clade. In an effort to ensure that family/genus names represent monophyletic clades, we performed a whole-genome based analysis of the genomes available for the cultured representatives of these genera: four species of Christensenella and two strains of Catabacter hongkongensis . A concatenated alignment of 135 shared protein sequences of single-copy core genes present in the included strains indicates that C. hongkongensis is indeed nested within the Christensenella clade. Based on their evolutionary relationship, we propose the transfer of Catabacter hongkongensis to the genus Christensenella as Christensenella hongkongensis comb. nov.


2020 ◽  
Vol 70 (12) ◽  
pp. 6402-6407 ◽  
Author(s):  
Yuna Park ◽  
Qingzhen Liu ◽  
Soohyun Maeng ◽  
Won Jung Choi ◽  
Yoonjee Chang ◽  
...  

Two bacterial strains designated as W3-2-3T and HKS04T were isolated from mineral water and a soil sample, respectively, in the Republic of Korea. The 16S rRNA genes of the two strains shared a sequence similarity of 93.5 %. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains W3-2-3T and HKS04T formed a distinct lineage within the genus Nocardioides of the family Nocardioidaceae (order Propionibacteriales ). The closely related species of strain W3-2-3T were Nocardioides albidus (98.9 %), Nocardioides caeni (98.8 %), Nocardioides kongjuensis (98.6 %), Nocardioides aromaticivorans (98.5 %), Nocardioides nitrophenolicus (98.4 %), Nocardioides flava (98.2 %) and Nocardioides ginsengisoli (98.1 %). The closest species of strain HKS04T was Nocardioides halotolerans (98.7 %). The genome sizes of strains W3-2-3T and HKS04T were 4741198 and 5 120341 bp, respectively. The genomic DNA G+C contents of strains W3-2-3T and HKS04T were 73.3 and 72.1 mol%, respectively. The main fatty acids of strain W3-2-3T were C17:1 ω6c and iso-C16:0 and those of strain HKS04T were iso-C16:0 and iso-C16:0 H. The main polar lipids of both strains were diphosphatidylglycerol and phosphatidylglycerol and the predominant respiratory quinone was MK-8(H4), supporting the affiliation of these strains with the genus Nocardioides . Based on the results of biochemical, chemotaxonomic and phylogenetic analyses, two novel species, Nocardioides convexus W3-2-3T (KACC 21211T=LMG 31251T) and Nocardioides anomalus HKS04T (KACC 18879T=LMG 31249T), are proposed.


Author(s):  
Yue Jiang ◽  
Lingmin Jiang ◽  
Yuxin Peng ◽  
Ki-Hyun Kim ◽  
Hyeon Ho Shin ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped strain (R2A-3T) was isolated from the toxin-producing dinoflagellate Centrodinium punctatum and identified as a novel genus and new species based on a polyphasic taxonomic approach. The optimum conditions for growth of the strain were at 25 °C, pH 8.0 and in the presence of 3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA genes and 92 core genes sets revealed that strain R2A-3T belongs to the family Nevskiaceae in the class Gammaproteobacteria and represented an independent taxon separated from other genera. The 16S rRNA gene of strain R2A-3T showed the highest sequence similarity to Polycyclovorans algicola TG408T (95.2%), Fontimonas thermophila HA-01T (94.1%) and Sinimarinibacterium flocculans NH6-24T (93.2%), and less than 92.8 % similarity to other genera in the family Nevskiaceae . The genome length of strain R2A-3T was 3608892 bp with 65.2 mol% G+C content. Summed feature 8 (comprising C18 : 1  ω7c and/or C18 : 1  ω6c) was the major fatty acid (>10 %). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were detected as the major polar lipids. The major respiratory quinone was ubiquinone-8. According to its phylogenetic, phenotypic, chemotaxonomic and genomic features, strain R2A-3T represents a new species in the new genus of the family Nevskiaceae . It is recommended to name it Flagellatimonas centrodinii gen. nov., sp. nov. The type strain is R2A-3T (=KCTC 82469T=GDMCC 1.2523T).


Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Yu-Shan Tang ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-YST696T, harbouring antibiotic- and toxic compound-resistace genes, isolated from poultry manure in Taiwan. Cells of CC-YST696T were short rods, motile with polar flagella, catalase- and oxidase-positive. Optimal growth occurred at 30 °С, pH 9 and with 1 % NaCl. The results of phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by CC-YST696T associated with Devosia chinhatensis (97.9 % sequence identity), Devosia riboflavina (97.3 %) and Devosia indica (97.2 %), and with lower sequence similarity values to other species. Average nucleotide identity (ANI) values were 72.8–80.0 % (n=17) compared within the type strains of species of of the genus Devosia . CC-YST696T contained C16:0, C18:0, C18:1ω7c 11-methyl and C18:1ω6c/ C18:1ω7c as the predominant fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, three unidentified glycolipids, two unidentified phospholipids and three unidentified lipids. The DNA G+C content was 62.2 mol% and the predominant quinone was ubiquinone Q-10. On the basis of its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence and ANI analyses, strain CC-YST696T is proposed to represent a novel species of the genus Devosia , for which the name Devosia faecipullorum sp. nov. (type strain CC-YST696T=BCRC 81284T=JCM 34167T) is proposed.


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


Sign in / Sign up

Export Citation Format

Share Document