scholarly journals Synergistic activity of polymyxin B combined with vancomycin against carbapenem-resistant and polymyxin-resistant Acinetobacter baumannii: first in vitro study

2019 ◽  
Vol 68 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Danielle Rosani Shinohara ◽  
Thatiany Cevallos Menegucci ◽  
Nayara Helisandra Fedrigo ◽  
Letícia Busato Migliorini ◽  
Floristher Elaine Carrara-Marroni ◽  
...  
2017 ◽  
Vol 111 ◽  
pp. 218-224 ◽  
Author(s):  
Chandana Jha ◽  
Sujata Ghosh ◽  
Vikas Gautam ◽  
Pankaj Malhotra ◽  
Pallab Ray

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Sazlyna Mohd Sazlly Lim ◽  
Aaron J. Heffernan ◽  
Jason A. Roberts ◽  
Fekade B. Sime

ABSTRACT Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are now considered potential treatments for CR-AB. This study aimed to explore the utility of fosfomycin-sulbactam combination (FOS/SUL) therapy against CR-AB isolates. Synergism of FOS/SUL against 50 clinical CR-AB isolates was screened using the checkerboard method. Thereafter, time-kill studies against two CR-AB isolates were performed. The time-kill data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Monte Carlo simulations were then performed to estimate the probability of stasis, 1-log kill, and 2-log kill after 24 h of combination therapy. The FOS/SUL combination demonstrated a synergistic effect against 74% of isolates. No antagonism was observed. The MIC50 and MIC90 of FOS/SUL were decreased 4- to 8-fold, compared to the monotherapy MIC50 and MIC90. In the time-kill studies, the combination displayed bactericidal activity against both isolates and synergistic activity against one isolate at the highest clinically achievable concentrations. Our PK/PD model was able to describe the interaction between fosfomycin and sulbactam in vitro. Bacterial kill was mainly driven by sulbactam, with fosfomycin augmentation. FOS/SUL regimens that included sulbactam at 4 g every 8 h demonstrated a probability of target attainment of 1-log10 kill at 24 h of ∼69 to 76%, compared to ∼15 to 30% with monotherapy regimens at the highest doses. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that FOS/SUL may potentially be effective against some CR-AB infections.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-7
Author(s):  
Mazen Safi ◽  
Laila Al-Hallab ◽  
Rasha Al-Abras ◽  
Marwa Khawajkiah ◽  
Heba Kherbik ◽  
...  

2021 ◽  
Vol Volume 14 ◽  
pp. 4657-4666
Author(s):  
Hui Zhang ◽  
Yunzhu Zhu ◽  
Ning Yang ◽  
Qinxiang Kong ◽  
Yahong Zheng ◽  
...  

2021 ◽  
Vol Volume 14 ◽  
pp. 5679-5680
Author(s):  
Hui Zhang ◽  
Yunzhu Zhu ◽  
Ning Yang ◽  
Qinxiang Kong ◽  
Yahong Zheng ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e18485 ◽  
Author(s):  
Tze-Peng Lim ◽  
Thean-Yen Tan ◽  
Winnie Lee ◽  
S. Sasikala ◽  
Thuan-Tong Tan ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 886 ◽  
Author(s):  
Alessandra Oliva ◽  
Stefania Garzoli ◽  
Massimiliano De Angelis ◽  
Carolina Marzuillo ◽  
Vincenzo Vullo ◽  
...  

Carbapenem-resistant Acinetobacter baumannii (CR-Ab) infections are associated with high morbidity and mortality. The aim of the study was to evaluate the in-vitro activity of different antimicrobial combinations (with and without colistin, COL) against clinical isolates of CR-Ab collected from patients with CR-Ab infection, including unconventional combinations such as COL + VANcomycin (VAN) and COL + rifampin (RIF). CR-Ab strains were collected from hospitalized patients at Sapienza University of Rome. Antimicrobial susceptibility patterns were determined throughout MIC50/90s whereas the synergistic activity was evaluated by qualitative (i.e., checkerboard) and quantitative (i.e., killing studies) methods. All the strains were found oxacillinase (OXA) producers and tigecycline (TIG) sensitive whereas 2 strains were resistant to COL. Application of the checkerboard method indicated complete synergism in COL combinations at different extension: 21.4%, 57.1%, 42.8%, 35.7% for COL + meropenem (MEM), COL + RIF, COL + VAN and COL + TIG, respectively, with the non-conventional combinations COL + VAN and COL + RIF exhibiting the highest rate of synergism. Regarding COL-free combination, complete synergism was observed in 35.7% of the strains for MEM + TIG. Killing studies showed that the combinations COL + MEM, COL + TIG and MEM + TIG were bactericidal and synergistic against both colistin-sensitive and low colistin-resistant strains whereas only the combinations COL + VAN and COL + RIF showed an early and durable bactericidal activity against all the tested strains, with absence of growth at 24 h. This study demonstrated that COL-based combinations lead to a high level of synergic and bactericidal activity, especially COL + VAN and COL + RIF, even in the presence of high level of COL resistance.


Sign in / Sign up

Export Citation Format

Share Document