virulence potential
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 149)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
Vânia Gaio ◽  
Tânia Lima ◽  
Manuel Vilanova ◽  
Nuno Cerca ◽  
Angela França

Staphylococcus epidermidis biofilm cells are characterized by increased antimicrobial tolerance and improved ability to evade host immune system defenses. These features are, in part, due to the presence of viable but non-culturable (VBNC) cells. A previous study identified genes potentially involved in VBNC cells formation in S. epidermidis biofilms, among which SERP1682/1681 raised special interest due to their putative role as a toxin–antitoxin system of the mazEF family. Herein, we constructed an S. epidermidis mutant lacking the mazEF genes homologues and determined their role in (i) VBNC state induction during biofilm formation, (ii) antimicrobial susceptibility, (iii) survival in human blood and plasma, and (iv) activation of immune cells. Our results revealed that mazEF homologue did not affect the proportion of VBNC cells in S. epidermidis 1457, refuting the previous hypothesis that mazEF homologue could be linked with the emergence of VBNC cells in S. epidermidis biofilms. Additionally, mazEF homologue did not seem to influence key virulence factors on this strain, since its deletion did not significantly affect the mutant biofilm formation capacity, antimicrobial tolerance or the response by immune cells. Surprisingly, our data suggest that mazEF does not behave as a toxin–antitoxin system in S. epidermidis strain 1457, since no decrease in the viability and culturability of bacteria was found when only the mazF toxin homologue was being expressed.


Author(s):  
Mariana Almeida Iglesias ◽  
Isabela Schneid Kroning ◽  
Tassiana Ramires ◽  
Carlos Eduardo Cunha ◽  
Gustavo Marçal S. G. Moreira ◽  
...  

The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the Southern region of Rio Grande do Sul, Brazil, based on pulsed field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), InlA expression by western blot (WB) and identification of mutation points in the inlA . PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroups IIb, n = 2, and IVb, n = 5; lineage II, serogroup IIc, n = 5), isolates with indistinguishable genetic profiles by this method were obtained from different slaughterhouses and sampling steps, with up to 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%, lineage I, n = 6, lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%, lineage I, n = 1, lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA leading to a premature stop codon (PMSC) type 19, at position 326 (GAA → TAA). The results demonstrated that most of L. monocytogenes isolates from Lineage I expressed InlA and were the most invasive in HCT indicating their high virulence potential, while most isolates from Lineage II showed attenuated invasion due to non-expression of InlA and the presence of PMSC type 19 in inlA . The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can be persisting or being reintroduced in beef processing facilities in the studied region and differences on their virulence potential based on their lineages and serogroups.


2021 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Giuditta Fiorella Schiavano ◽  
Collins Njie Ateba ◽  
Annalisa Petruzzelli ◽  
Veronica Mele ◽  
Giulia Amagliani ◽  
...  

Listeria monocytogenes (Lm) is the causative agent of human listeriosis. Lm strains have different virulence potential. For this reason, we preliminarily characterised via Whole-Genome Sequencing (WGS) some Lm strains for their key genomic features and virulence-associated determinants, assigning the clonal complex (CC). Moreover, the ability of the same strains to adhere to and invade human colon carcinoma cell line Caco-2, evaluating the possible correspondence with their genetic virulence profile, was also assessed. The clinical strains typed belonged to clonal complex (CC)1, CC31, and CC101 and showed a very low invasiveness. The Lm strains isolated from food were assigned to CC1, CC7, CC9, and CC121. All CC1 carried the hypervirulence pathogenicity island LIPI-3 in addition to LIPI-1. Premature stop codons in the inlA gene were found only in Lm of food origin belonging to CC9 and CC121. The presence of LIPI2_inlII was observed in all the CCs except CC1. The CC7 strain, belonging to an epidemic cluster, also carried the internalin genes inlG and inlL and showed the highest level of invasion. In contrast, the human CC31 strain lacked the lapB and vip genes and presented the lowest level of invasiveness. In Lm, the genetic determinants of hypo- or hypervirulence are not necessarily predictive of a cell adhesion and/or invasion ability in vitro. Moreover, since listeriosis results from the interplay between host and virulence features of the pathogen, even hypovirulent clones are able to cause infection in immunocompromised people.


2021 ◽  
Vol 29 (3) ◽  
pp. 167-175
Author(s):  
Edwin Aprianda ◽  
Gunawan Djajakirana ◽  
Darmawan Darmawan

Cordycep militaris (L) is known in oil palm plantations as a natural enemy of nettle caterpillars.  This fungus infects the caterpillars that descend down to become pupae around the palm circle, so that the pupae do not develop into imago and the pest's life cycle will be interrupted. This fungus is one of the 3 main entomopathogenic fungi used as bioinsecticides to control pests in oil palm plantations. In this study, the characteristics of C. militaris were observed from 5 oil palm plantations cultured in vitro using two types of media and two incubation methods. The results showed that there were mycelium pigmentation in nutrient-rich media Sabouraud Dextrose Agar plus Yeast extract (SDAY) when incubated with lighting.  Only one of five mycelium cultures using SDAY media showed pigmentation on the no-light incubation method. Pigmentation did not occur in nutrient-poor media such as agar (WA), either incubated with lighting or with no-light. The growth of isolates was generally higher on SDAY media than on WA media. This study showed that C. militaris is a facultative phagotrophic fungus. The highest growth of isolates cultured on SDAY media incubated with lighting was found in isolates A and C, with colony diameter 90 mm, high mycelium density (+++) and hairy texture like cotton at the end of the 3rd week after inoculation.  In the no-light incubation method, the highest growth was found in isolates B and C with colony diameter 90 mm, high mycelium density (+++) and hairy texture like cotton at the end of the 3rd week after inoculation. Isolates A and C showed high virulence potential to be used as bioinsecticides.


2021 ◽  
Author(s):  
Maribasappa Karched ◽  
Radhika Bhardwaj ◽  
Muawia Qudeimat ◽  
Areej Al-Khabbaz ◽  
Arjuna Ellepola

Abstract Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From gene ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1a/MIP-1b, IL-1b, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Carlos Neila-Ibáñez ◽  
Louise Brogaard ◽  
Lola Pailler-García ◽  
Jorge Martínez ◽  
Joaquim Segalés ◽  
...  

AbstractStreptococcus suis is a zoonotic pathogen of swine involved in arthritis, polyserositis, and meningitis. Colonization of piglets by S. suis is very common and occurs early in life. The clinical outcome of infection is influenced by the virulence of the S. suis strains and the immunity of the animals. Here, the role of innate immunity was studied in cesarean-derived colostrum-deprived piglets inoculated intranasally with either virulent S. suis strain 10 (S10) or non-virulent S. suis strain T15. Colonization of the inoculated piglets was confirmed at the end of the study by PCR and immunohistochemistry. Fever (≥40.5 °C) was more prevalent in piglets inoculated with S10 compared to T15 at 4 h after inoculation. During the 3 days of monitoring, no other major clinical signs were detected. Accordingly, only small changes in transcription of genes associated with the antibacterial innate immune response were observed at systemic sites, with S10 inducing an earlier response than T15 in blood. Local inflammatory response to the inoculation, evaluated by transcriptional analysis of selected genes in nasal swabs, was more sustained in piglets inoculated with the virulent S10, as demonstrated by transcription of inflammation-related genes, such as IL1B, IL1A, and IRF7. In contrast, most of the gene expression changes in trachea, lungs, and associated lymph nodes were observed in response to the non-virulent T15 strain. Thus, S. suis colonization in the absence of systemic infection induces an innate immune response in piglets that appears to be related to the virulence potential of the colonizing strain.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kunli Zhang ◽  
Pinpin Chu ◽  
Shuai Song ◽  
Dongxia Yang ◽  
Zhibiao Bian ◽  
...  

Haemophilus parasuis has emerged as an important bacterial pathogen in pig husbandry, as H. parasuis can coinfect pigs with a variety of pathogenic microorganisms and further cause an aggravation of the disease. It is crucial to investigate its pathogenetic mechanism. Gram-negative bacteria naturally secrete outer membrane vesicles (OMVs), and their potent virulence factors play prominent roles that affect the interaction between bacteria and host. Still, the pathogenesis that is associated with the bacterial OMVs has not been well-elucidated. In this study, we investigated the secretion of OMVs from a clinical H. parasuis isolate strain (H45). In addition, we further analyzed the characterization, the comprehensive proteome, and the virulence potential of OMVs. Our data demonstrated that H. parasuis could secrete OMVs into the extracellular milieu during infection. Using liquid chromatography with tandem mass spectrometry (MS/MS) identification and bio-information analysis, we identified 588 different proteins associated with OMVs. Also, we also analyzed the subcellular location and biological function of those proteins. These proteins are mainly involved in immune and iron metabolism. Moreover, we confirmed the pathogenicity of H. parasuis OMVs by observing a strong inflammatory response in J774A.1 and porcine alveolar macrophages. Taken together, our findings suggested that OMVs from H. parasuis were involved in the pathogenesis of this bacterium during infection.


2021 ◽  
Author(s):  
Toril Lindback ◽  
Annette Fagerlund ◽  
Marina Elisabeth Aspholm ◽  
Grzegorz Wegrzyn

Shiga toxin (Stx) is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the stx genes are carried by temperate bacteriophages (Stx phages). The switch between lysogenic and lytic life cycle of the phage, which is crucial for Stx production and for severity of the disease, is regulated by the CI repressor. CI maintain latency by preventing transcription of the replication proteins. Three EHEC phage replication units (Eru1-3) in addition to the classical lambdoid replication region have been described previously, and Stx phages carrying the Eru1 replication region were associated with highly virulent EHEC strains. In this study, we have classified the Eru replication region of 419 Stx phages. In addition to the lambdoid replication region and the three already described Erus, ten novel Erus (named Eru4 to Eru13) were detected. The lambdoid type, Eru1, Eru4 and Eru7 seem to be widely distributed in Western Europe. Notably, EHEC strains involved in severe outbreaks in England and Norway carry Stx phages with Eru1, Eru2, Eru5 and Eru7 replication regions. Phylogenetic analysis of CI repressors from Stx phages revealed eight major clades that largely separate according to Eru type. The classification of replication regions and CI proteins of Stx phages provides an important platform for further studies aimed to assess how characteristics of the replication region influence the regulation of phage life cycle and, consequently, the virulence potential of the host EHEC strain. IMPORTANCE: EHEC is an emerging health challenge worldwide and outbreaks caused by this pathogen tend to be more frequent and severe. Increased knowledge on how characteristics of the replication region influence the virulence of E. coli may be used for more precise identification of high-risk EHEC strains.


2021 ◽  
Vol 118 (47) ◽  
pp. e2111418118
Author(s):  
Aftab Nadeem ◽  
Raghavendra Nagampalli ◽  
Eric Toh ◽  
Athar Alam ◽  
Si Lhyam Myint ◽  
...  

The protein MakA was discovered as a motility-associated secreted toxin from Vibrio cholerae. Here, we show that MakA is part of a gene cluster encoding four additional proteins: MakB, MakC, MakD, and MakE. MakA, MakB, and MakE were readily detected in culture supernatants of wild-type V. cholerae, whereas secretion was very much reduced from a flagellum-deficient mutant. Crystal structures of MakA, MakB, and MakE revealed a structural relationship to a superfamily of bacterial pore-forming toxins. Expression of MakA/B/E in Escherichia coli resulted in toxicity toward Caenorhabditis elegans used as a predatory model organism. None of these Mak proteins alone or in pairwise combinations were cytolytic, but an equimolar mixture of MakA, MakB, and MakE acted as a tripartite cytolytic toxin in vitro, causing lysis of erythrocytes and cytotoxicity on cultured human colon carcinoma cells. Formation of oligomeric complexes on liposomes was observed by electron microscopy. Oligomer interaction with membranes was initiated by MakA membrane binding followed by MakB and MakE joining the assembly of a pore structure. A predicted membrane insertion domain of MakA was shown by site-directed mutagenesis to be essential for toxicity toward C. elegans. Bioinformatic analyses revealed that the makCDBAE gene cluster is present as a genomic island in the vast majority of sequenced genomes of V. cholerae and the fish pathogen Vibrio anguillarum. We suggest that the hitherto-unrecognized cytolytic MakA/B/E toxin can contribute to Vibrionaceae fitness and virulence potential in different host environments and organisms.


Sign in / Sign up

Export Citation Format

Share Document