scholarly journals Novel protein targets of the humoral immune response to Listeria monocytogenes infection in rabbits

2007 ◽  
Vol 56 (7) ◽  
pp. 888-895 ◽  
Author(s):  
Wei Ling Yu ◽  
Hanhong Dan ◽  
Min Lin

The role of the humoral immune response in protective immunity against listerial infection has been overlooked and is essentially unknown. This study aimed to discover the protein targets of Listeria monocytogenes that elicit an antibody response following infection in a rabbit model. A genomic expression library for L. monocytogenes was constructed and differentially screened to identify genes encoding proteins that reacted with antiserum from rabbits infected with live L. monocytogenes serotype 4b (RαL), but not with that from animals immunized with heat-killed bacteria (RαK). Thirty-one clones expressing proteins that reacted exclusively with RαL were identified and sequenced. Sequence analysis, together with Western blot analysis of the proteins expressed from positive clones, led to the identification of eight L. monocytogenes proteins as targets of humoral immune responses during listerial infection: three internalin members (InlA, InlD and InlC2) and five novel proteins of unknown function (designated IspA, IspB, IspC, IspD and IspE, respectively). Exhibition of humoral immune responses to these proteins in actively infected rabbits but not in animals receiving heat-killed L. monocytogenes suggested that they were induced or significantly upregulated in vivo during infection and thus are important in Listeria pathogenesis. With the exception of antibodies to InlA, this is the first demonstration of antibodies to the other seven proteins in infected hosts. These immunogenic proteins may be useful candidates for elucidation of the role of antibodies in protective immunity in the context of listerial infection, as well as potential targets for serodiagnostic reagents and vaccine and drug development.

2015 ◽  
Vol 23 (1) ◽  
pp. 2-5 ◽  
Author(s):  
Steven M. Singer

ABSTRACTFor years, studies of the immune response toGiardia lambliainfection focused on the production of IgA by infected hosts and antigenic variation by the parasite to escape destruction by this IgA. A new study by Hanevik and colleagues (C. S. Saghaug, S. Sørnes, D. Peirasmaki, S. Svärd, N. Langeland, and K. Hanevik, Clin Vaccine Immunol 23:11–18, 2016,http://dx.doi.org/10.1128/CVI.00419-15) highlights the emerging role of interleukin-17 (IL-17) in immunity to this parasite. Along with recent studies ofGiardiainfections of animals, this work shows that IL-17 appears to be essential for the control of these infections and to be a key factor linking cellular and humoral immune responses.


1999 ◽  
Vol 73 (3) ◽  
pp. 239-243 ◽  
Author(s):  
M. Rodero ◽  
C. Cuéllar

The aim of this study was to determine if the plerocercoid larvae of Gymnorhynchus gigas, a common cestode of the ray’s bream (Brama raii), possess antigenic compounds potentially capable of provoking anaphylactic episodes. A murine experimental model, using BALB/c mice, was developed to study the humoral immune response induced by G. gigas extracts. A highly specific humoral immune response was detected and cross-reactions were not observed between parasite and host antigens. The presence of IgM and IgG3 levels suggest the presence of thymus-independent antigens in the parasitic extract. The IgG antibody class showed the highest levels, with the IgG1 the predominant subclass. These IgG1 levels are in accordance with the supposed presence of a type I allergic reaction after the ingestion of G. gigas plerocercoids parasitizing fish, as well as inducing anaphylaxia in fish. These results indicate that somatic products released from ingested larvae of G. gigas could induce the development of a Th2 response capable of causing allergic disorders.


2007 ◽  
Vol 14 (5) ◽  
pp. 644-647 ◽  
Author(s):  
C. Vauloup-Fellous ◽  
L. Grangeot-Keros

ABSTRACT We measured rubella virus immunoglobulin G (IgG) and IgM levels, as well as IgG avidity indexes, in serum samples taken before or after 6 months either after infection or after vaccination. The results obtained indicate that humoral immune responses are different after primary infection and after vaccination. This may have important consequences on the serological diagnosis of rubella virus infection.


2009 ◽  
Vol 54 (3) ◽  
pp. 239-245 ◽  
Author(s):  
J. M. L. Maia ◽  
L. G. S. Monnazzi ◽  
B. M. M. Medeiros

2012 ◽  
Vol 109 (40) ◽  
pp. E2699-E2706 ◽  
Author(s):  
R. Ouchida ◽  
H. Mori ◽  
K. Hase ◽  
H. Takatsu ◽  
T. Kurosaki ◽  
...  

2013 ◽  
Vol 81 (12) ◽  
pp. 4626-4634 ◽  
Author(s):  
Ediane B. Silva ◽  
Andrew Goodyear ◽  
Marjorie D. Sutherland ◽  
Nicole L. Podnecky ◽  
Mercedes Gonzalez-Juarrero ◽  
...  

ABSTRACTInfections with the Gram-negative bacteriumBurkholderia pseudomallei(melioidosis) are associated with high mortality, and there is currently no approved vaccine to prevent the development of melioidosis in humans. Infected patients also do not develop protective immunity to reinfection, and some individuals will develop chronic, subclinical infections withB. pseudomallei. At present, our understanding of what constitutes effective protective immunity againstB. pseudomalleiinfection remains incomplete. Therefore, we conducted a study to elucidate immune correlates of vaccine-induced protective immunity against acuteB. pseudomalleiinfection. BALB/c and C57BL/6 mice were immunized subcutaneously with a highly attenuated, Select Agent-excludedpurMdeletion mutant ofB. pseudomallei(strain Bp82) and then subjected to intranasal challenge with virulentB. pseudomalleistrain 1026b. Immunization with Bp82 generated significant protection from challenge withB. pseudomallei, and protection was associated with a significant reduction in bacterial burden in lungs, liver, and spleen of immunized mice. Humoral immunity was critically important for vaccine-induced protection, as mice lacking B cells were not protected by immunization and serum from Bp82-vaccinated mice could transfer partial protection to nonvaccinated animals. In contrast, vaccine-induced protective immunity was found to be independent of both CD4 and CD8 T cells. Tracking studies demonstrated uptake of the Bp82 vaccine strain predominately by neutrophils in vaccine-draining lymph nodes and by smaller numbers of dendritic cells (DC) and monocytes. We concluded that protection following cutaneous immunization with a live attenuatedBurkholderiavaccine strain was dependent primarily on generation of effective humoral immune responses.


2021 ◽  
Author(s):  
Chen Chen ◽  
Chengguang Zhang ◽  
Haoqi Li ◽  
Zongmei Wang ◽  
Yueming Yuan ◽  
...  

Rabies, caused by rabies virus (RABV), is fatal to both humans and animals around the world. Effective clinical therapy for rabies has not been achieved, and vaccination is the most effective means of preventing and controlling rabies. Although different vaccines, such as live attenuated and inactivated vaccines, can induce different immune responses, different expression of pattern recognition receptors (PRRs) also causes diverse immune responses. Toll-like receptor 4 (TLR4) is a pivotal PRR that induces cytokine production and bridges innate and adaptive immunity. Importantly, TLR4 recognizes various virus-derived pathogen-associated molecular patterns (PAMPs) and virus-induced damage-associated molecular patterns (DAMPs), usually leading to the activation of immune cells. However, the role of TLR4 in the humoral immune response induced by RABV has not been revealed yet. Based on TLR4-deficient ( TLR4 -/- ) and wild-type (WT) mouse models, we report that TLR4-dependent recruitment of the conventional type-2 dendritic cells (CD8α - CD11b + cDC2) into secondary lymph organs (SLOs) is critical for antigen presentation. cDC2-initiated differentiation of Tfh cells promotes the proliferation of germinal centre (GC) B cells, the formation of GCs, and the production of plasma cells (PCs), all of which contribute to the production of RABV-specific IgG and virus-neutralizing antibodies (VNAs). Collectively, our work demonstrates that TLR4 is necessary for the recruitment of cDC2 and for the induction of RABV-induced humoral immunity, which is regulated by the cDC2-Tfh-GC B axis. IMPORTANCE Vaccination is the most efficient method to prevent rabies. TLR4, a well-known immune sensor, plays a critical role in initiating innate immune response. Here, we found that TLR4 deficiency ( TLR4 -/- ) mice suppressed the induction of humoral immune response after immunization with rabies virus (RABV), including reduced production of VNAs and RABV-specific IgG, compared with that occurred in wild-type (WT) mice. As a consequence, TLR4 -/- mice exhibited higher mortality than WT mice after challenge with virulent RABV. Importantly, further investigation found that TLR4 signaling promoted the recruitment of cDC2 (CD8α + CD11b - ), a subset of cDCs known to induce CD4 + T cell immunity through their MHC-II presentation machinery. Our results imply that TLR4 is indispensable for an efficient humoral response to rabies vaccine, which provides new insight into the development of novel rabies vaccines.


Sign in / Sign up

Export Citation Format

Share Document