humoral immune responses
Recently Published Documents


TOTAL DOCUMENTS

1505
(FIVE YEARS 313)

H-INDEX

85
(FIVE YEARS 12)

2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ilka Wahl ◽  
Hedda Wardemann

The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.


2022 ◽  
Author(s):  
Patrick Taeschler ◽  
Carlo Cervia ◽  
Yves Zurbuchen ◽  
Sara Hasler ◽  
Christian Pou ◽  
...  

Background: Several autoimmune features occur during coronavirus disease 2019 (COVID-19), with possible implications for disease course, immunity, and autoimmune pathology. Objective: We longitudinally screened for clinically relevant systemic autoantibodies to assess their prevalence, temporal trajectory, and association with immunity, comorbidities, and severity of COVID-19. Methods: We performed highly sensitive indirect immunofluorescence assays to detect anti-nuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA), along with serum proteomics and virome-wide serological profiling in a multicentric cohort of 175 COVID-19 patients followed-up to one year after infection, eleven vaccinated individuals, and 41 unexposed controls. Results: Compared to healthy controls, similar prevalence and patterns of ANA were present in patients during acute COVID-19 and recovery. However, paired analysis revealed a subgroup of patients with transient presence of certain ANA patterns during acute COVID-19. Furthermore, patients with severe COVID-19 exhibited a high prevalence of ANCA during acute disease. These autoantibodies were quantitatively associated with higher SARS-CoV-2-specific antibody titers in COVID-19 patients and in vaccinated individuals, thus linking autoantibody production to increased antigen-specific humoral responses. Notably, the qualitative breadth of antibodies cross-reactive with other coronaviruses was comparable in ANA-positive and ANA-negative individuals during acute COVID-19. In autoantibody-positive patients, multiparametric characterization demonstrated an inflammatory signature during acute COVID-19 and alterations of the B cell compartment after recovery. Conclusion: Highly sensitive indirect immunofluorescence assays revealed transient autoantibody production during acute SARS-CoV-2 infection, while the presence of autoantibodies in COVID-19 patients correlated with increased anti-viral humoral immune responses and inflammatory immune signatures.


Author(s):  
Flávia Batista Ferreira França ◽  
Murilo Vieira Silva ◽  
Mariana Ferreira Silva ◽  
Eliézer Lucas Pires Ramos ◽  
Vanessa dos Santos Miranda ◽  
...  

Neospora caninum is a protozoan associated with abortions in ruminants and neuromuscular disease in dogs. Classically, the immune response against apicomplexan parasites is characterized by the production of proinflammatory cytokines, such as IL-12, IFN-γ and TNF. TNF is mainly produced during the acute phases of the infections and binds to TNF receptor 1 (CD120a, p55, TNFR1) activating a variety of cells, hence playing an important role in the induction of the inflammatory process against diverse pathogens. Thus, in this study, we aimed to evaluate the role of TNF in cellular and humoral immune responses during N. caninum infection. For this purpose, we used a mouse model of infection based on wildtype (WT) and genetically deficient C57BL/6 mice in TNFR1 (Tnfr1-/-). We observed that Tnfr1-/- mice presented higher mortality associated with inflammatory lesions and increased parasite burden in the brain after the infection with N. caninum tachyzoites. Moreover, Tnfr1-/- mice showed a reduction in nitric oxide (NO) levels in vivo. We also observed that Tnfr1-/- mice showed enhanced serum concentration of antigen-specific IgG2 subclass, while IgG1 production was significantly reduced compared to WT mice, suggesting that TNFR1 is required for regular IgG subclass production and antigen recognition. Based on our results, we conclude that the TNF-TNFR1 complex is crucial for mediating host resistance during the infection by N. caninum.


2022 ◽  
Vol 22 ◽  
Author(s):  
Roghayyeh Baghban ◽  
Shirin Mahmoodi

Background: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has affected millions of people globally, in this regard, known as a pandemic by the World Health Organization (WHO). There is sufficient scientific evidence that a preventive COVID-19 vaccine is the most effective approach to combat with COVID-19 pandemic, therefore there is an essential need for safe and protective vaccines to fight it. Methods: Global efforts in developing a vaccine against COVID-19 have resulted in the development of different vaccine platforms with various safety and efficacy including live-attenuated vaccines, inactivated vaccines, subunit vaccines, and nucleic acid-based vaccines against coronavirus disease 2019 (COVID-19). Nucleic acid-based vaccines consist of mRNA and DNA vaccines have shown promising results in stimulating cellular and humoral immune responses properly against COVID-19, which their rapid and easy manufacturing process compared to others have made them considerable. mRNA-based vaccines platform by Pfizer/BioNtech and Moderna companies are the first approved vaccines for emergency use against COVID-19. Results: This narrative review highlights the recent advances in developing nucleic acid-based vaccines for COVID-19. Conclusion: The fast global dissemination of the coronavirus has highlighted the urgent necessity to build an efficient vaccine to inhibit disease. Cooperative attempts throughout the world have paid to the fast and unprecedented production of vaccines. Much needs to be learned regarding SARSCoV-2 and vaccine development against it.


2022 ◽  
Author(s):  
Judith Pineau ◽  
Léa Pinon ◽  
Olivier Mesdjian ◽  
Jacques Fattaccioli ◽  
Ana-Maria Lennon Duménil ◽  
...  

Immune synapse formation is a key step for lymphocyte activation. In B lymphocytes, the immune synapse controls the production of high-affinity antibodies, thereby defining the efficiency of humoral immune responses. While the key roles played by both the actin and microtubule cytoskeletons in the formation and function of the immune synapse have become increasingly clear, how the different events involved in synapse formation are coordinated in space and time by actin-microtubule interactions is not understood. Using a microfluidic pairing device, we studied with unprecedented resolution the dynamics of the various events leading to immune synapse formation and maintenance. Our results identify two groups of events, local and global dominated, respectively, by actin and microtubules dynamics. They further highlight an unexpected role for microtubules and the GEF-H1-RhoA axis in restricting F-actin polymerization at the immune synapse to define the cell polarity axis, allowing the formation and maintenance of a unique competent immune synapse.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuma Sugiyama ◽  
Mitsuhiro Fujiwara ◽  
Akihiko Sakamoto ◽  
Hiromichi Tsushima ◽  
Akihiko Nishikimi ◽  
...  

Abstract Background Memory B cells are an antigen-experienced B-cell population with the ability to rapidly differentiate into antibody-producing cells by recall responses. We recently found that dedicator of cytokinesis 11 (DOCK11) contributes to the expansion of antigen-specific populations among germinal center B cells upon immunization. In comparison, limited information is available on the contribution of DOCK11 to secondary humoral immune responses. Results In this study, effects of the DOCK11 deficiency in B cells were examined on secondary immune responses to protein antigen. The lack of DOCK11 in B cells resulted in the impaired induction of antibody-producing cells upon secondary immunization with protein antigen. DOCK11 was dispensable for the recall responses of antigen-experienced B cells, as demonstrated by the comparable induction of antibody-producing cells in mice given transfer of antigen-experienced B cells with no DOCK11 expression. Instead, the lack of DOCK11 in B cells resulted in the impaired secondary immune responses in a B cell-extrinsic manner, which was recovered by the adoptive transfer of cognate T cells. Conclusions We addressed that intrinsic and extrinsic effects of DOCK11 expression in B cells may contribute to secondary humoral immune responses in manner of the induction of cognate T-cell help.


2022 ◽  
Author(s):  
Harsha Raheja ◽  
Soma Das ◽  
Anindita Banerjee ◽  
Dikshaya P ◽  
Deepika C ◽  
...  

The emergence and evolution of SARS-CoV-2 is characterized by the occurrence of diverse sets of mutations that affect virus characteristics, including transmissibility and antigenicity. Recent studies have focused mostly on Spike protein mutations; however, SARS-CoV-2 variants of interest (VoI) or concern (VoC) contain significant mutations in the nucleocapsid protein as well. To study the relevance of the mutations at the virion level, recombinant baculovirus expression system based VLPs were generated for the prototype Wuhan sequence along with Spike mutants like D614G, G1124V and the significant RG203KR mutation in Nucleocapsid. All the four structural proteins assembled in a particle wherein the morphology and size of the particle confirmed by TEM closely resembles the native virion. The VLP harbouring RG203KR mutations in nucleocapsid exhibited augmentation of humoral immune responses and enhanced neutralization by the immunized mice sera. Results demonstrate a non-infectious platform to quickly assess the implication of mutations in structural proteins of the emerging variant.


Author(s):  
Shaghayegh Rahdan ◽  
Seyed Alireza Razavi ◽  
Mahboobeh Nazari ◽  
Sorour Shojaeian ◽  
Fazel Shokri ◽  
...  

Background: Placenta-specific 1 (PLAC1) is one of the recently-discovered Cancer-Testis-Placenta (CTP) antigen with restricted normal tissue and ectopic expression in a wide range of cancer cells from different histological origins. The production of recombinant human PLAC1 has already been optimized; however, no study has been reported so far on the production and purification of mouse plac1. In this study, mouse plac1 expression and purification was optimized in a prokaryotic system and the effects of the generated proteins on inducing humoral responses in mice were investigated. Methods: A fusion protein containing full extracellular domain of mouse plac1, immunostimulatory peptides, tetanus toxin P2P30 and PADRE and KDEL3 signal (main plac1), and the same fragment without immunostimulatory peptides (control plac1) was produced. To optimize production and purification steps, different parameters including bacterial strain, cultivation temperature, cultivation time, IPTG concentration, culture medium, and also different buffers for purification of the recombinant proteins were tested. After confirming the identity of recombinant plac1 proteins with Western Blotting (WB) and ELISA assays, these proteins were subcutaneously injected in mice with Freund's adjuvant and the anti-plac1 antibody response was detected by ELISA. Results: The optimal expression level of main and control plac1 was obtained in BL21 (DE3) and TB culture medium in the presence of 0.25 mM IPTG after 24 hr of induction at 15°C. The buffer containing 2% sarkosyl produced higher yield and purity. Our results showed specific reactivity of anti-human recombinant plac1 polyclonal antibody with both main and control plac1 recombinant proteins in WB and ELISA analysis. Both proteins induced humoral responses in mice; however, anti-plac1  antibody titer was significantly higher in sera of mice immunized with main compared to control plac1. Conclusion: In this study, an optimized protocol for production and purification of mouse plac1 was reported and it was shown that insertion of immunostimulatory peptides in gene construct could efficiently enhance humoral immune responses against mouse plac1, which could potentially augment cellular immune responses against plac1 leading to more effective anti-cancer responses.


2022 ◽  
Author(s):  
Kapil K. Saharia ◽  
Jennifer S. Husson ◽  
Silke V. Niederhaus ◽  
Thierry Iraguha ◽  
Stephanie V. Avila ◽  
...  

BACKGROUND: Solid organ transplant recipients (SOTR), who typically receive post-transplant immunosuppression, show increased COVID-19-related mortality. It is unclear whether an additional dose of COVID-19 vaccines in SOTR can overcome the reduced immune responsiveness against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants. METHODS: We performed a prospective cohort study of 53 SOTR receiving SARS-CoV-2 vaccination into a prospective cohort study performing detailed immunoprofiling of humoral immune responses against SARS-CoV-2 and its variants. RESULTS: Prior to the additional vaccine dose, 60.3% of SOTR showed no measurable neutralization and only 18.9% demonstrated neutralizing activity of >90% following two vaccine doses. More intensive immunosuppression, antimetabolites in particular, negatively impacted antiviral immunity. While absolute IgG levels were lower in SOTR than controls, antibody titers against microbial recall antigens were in fact higher. In contrast, SOTR showed reduced vaccine-induced IgG/IgA antibody titers against SARS-CoV-2 and its delta variants. Vaccinated SOTR showed a markedly fewer linear B cell epitopes, indicating reduced B cell diversity. Importantly, a third vaccine dose led to an increase in anti-SARS-CoV-2 antibody titers and neutralizing activity across alpha, beta and delta variants. However, we observed a significant decrease in anti-spike antibody titers with the omicron variant. CONCLUSIONS: Only a small subgroup of SOTR generated functionally relevant antibodies after completing the initial vaccine series based on dysfunctional priming of immune responses against novel antigens. An additional dose of the vaccine results in dramatically improved antibody responses against all SARS-CoV-2 variants except omicron.


Sign in / Sign up

Export Citation Format

Share Document