scholarly journals Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2

Microbiology ◽  
2008 ◽  
Vol 154 (4) ◽  
pp. 1104-1116 ◽  
Author(s):  
Leanne Purins ◽  
Luisa Van Den Bosch ◽  
Vanessa Richardson ◽  
Renato Morona
2012 ◽  
Vol 45 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Anilei Hoare ◽  
Denisse Bravo ◽  
Mara Martinic ◽  
Miguel A Valvano ◽  
Inés Contreras ◽  
...  

2014 ◽  
Vol 22 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Gregor Hagelueken ◽  
Bradley R Clarke ◽  
Hexian Huang ◽  
Anne Tuukkanen ◽  
Iulia Danciu ◽  
...  

1997 ◽  
Vol 23 (4) ◽  
pp. 765-775 ◽  
Author(s):  
Luisa Van Den Bosch ◽  
Paul A. Manning ◽  
Renato Morona

2010 ◽  
Vol 192 (13) ◽  
pp. 3385-3393 ◽  
Author(s):  
Magdalene Papadopoulos ◽  
Renato Morona

ABSTRACT In Shigella flexneri, the polysaccharide copolymerase (PCP) protein WzzSF confers a modal length of 10 to 17 repeat units (RUs) to the O-antigen (Oag) component of lipopolysaccharide (LPS). PCPs form oligomeric structures believed to be related to their function. To identify functionally important regions within WzzSF, random in-frame linker mutagenesis was used to create mutants with 5-amino-acid insertions (termed Wzzi proteins), and DNA sequencing was used to locate the insertions. Analysis of the resulting LPS conferred by Wzzi proteins identified five mutant classes. The class I mutants were inactive, resulting in nonregulated LPS Oag chains, while classes II and III conferred shorter LPS Oag chains of 2 to 10 and 8 to 14 RUs, respectively. Class IV mutants retained near-wild-type function, and class V mutants increased the LPS Oag chain length to 16 to 25 RUs. In vivo formaldehyde cross-linking indicated class V mutants readily formed high-molecular-mass oligomers; however, class II and III Wzzi mutants were not effectively cross-linked. Wzz dimer stability was also investigated by heating cross-linked oligomers at 100°C in the presence of SDS. Unlike the WzzSF wild type and class IV and V Wzzi mutants, the class II and III mutant dimers were not detectable. The location of each insertion was mapped onto available PCP three-dimensional (3D) structures, revealing that class V mutations were most likely located within the inner cavity of the PCP oligomer. These data suggest that the ability to produce stable dimers may be important in determining Oag modal chain length.


2008 ◽  
Vol 190 (6) ◽  
pp. 2128-2137 ◽  
Author(s):  
Cristina L. Marolda ◽  
Emily R. Haggerty ◽  
Michael Lung ◽  
Miguel A. Valvano

ABSTRACT Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted α-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.


Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3260-3269 ◽  
Author(s):  
Javier A. Carter ◽  
Juan C. Jiménez ◽  
Mercedes Zaldívar ◽  
Sergio A. Álvarez ◽  
Cristina L. Marolda ◽  
...  

The lipopolysaccharide O antigen of Shigella flexneri 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded WzzpHS-2 proteins, respectively. In this study, genes wzzB, wzz pHS-2 and wzy (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators wzzB and wzz pHS-2 revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the wzy gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of wzy. Thus, the level of expression of wzy is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and WzzpHS-2 proteins, but very low levels of Wzy. In vivo cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.


Sign in / Sign up

Export Citation Format

Share Document