scholarly journals Identification of the nuclear localization signals within the Epstein–Barr virus EBNA-6 protein

2004 ◽  
Vol 85 (1) ◽  
pp. 165-172 ◽  
Author(s):  
Kenia Krauer ◽  
Marion Buck ◽  
James Flanagan ◽  
Deanna Belzer ◽  
Tom Sculley
2006 ◽  
Vol 87 (4) ◽  
pp. 789-793 ◽  
Author(s):  
Anita Burgess ◽  
Marion Buck ◽  
Kenia Krauer ◽  
Tom Sculley

The Epstein–Barr virus nuclear antigen (EBNA) 3B is a hydrophilic, proline-rich, charged protein that is thought to be involved in transcriptional regulation and is targeted exclusively to the cell nucleus, where it localizes to discrete subnuclear granules. Co-localization studies utilizing a fusion protein between enhanced green fluorescent protein (EGFP) and EBNA3B with FLAG-tagged EBNA3A and EBNA3C proteins demonstrated that EBNA3B co-localized with both EBNA3A and EBNA3C in the nuclei of cells when overexpressed. Computer analyses identified four potential nuclear-localization signals (NLSs) in the EBNA3B amino acid sequence. By utilizing fusion proteins with EGFP, deletion constructs of EBNA3B and site-directed mutagenesis, three of the four NLSs (aa 160–166, 430–434 and 867–873) were shown to be functional in truncated forms of EBNA3B, whilst an additional NLS (aa 243–246) was identified within the N-terminal region of EBNA3B. Only two of the NLSs were found to be functional in the context of the full-length EBNA3B protein.


2006 ◽  
Vol 87 (10) ◽  
pp. 2879-2884 ◽  
Author(s):  
Marion Buck ◽  
Anita Burgess ◽  
Roslynn Stirzaker ◽  
Kenia Krauer ◽  
Tom Sculley

The Epstein–Barr nuclear antigen 3A (EBNA3A) is one of only six viral proteins essential for Epstein–Barr virus-induced transformation of primary human B cells in vitro. Viral proteins such as EBNA3A are able to interact with cellular proteins, manipulating various biochemical and signalling pathways to initiate and maintain the transformed state of infected cells. EBNA3A has been reported to have one nuclear-localization signal and is targeted to the nucleus during transformation, where it associates with components of the nuclear matrix. By using enhanced green fluorescent protein-tagged deletion mutants of EBNA3A in combination with site-directed mutagenesis, an additional five functional nuclear-localization signals have been identified in the EBNA3A protein. Two of these (aa 63–66 and 375–381) were computer-predicted, whilst the remaining three (aa 394–398, 573–578 and 598–603) were defined functionally in this study.


Virology ◽  
1998 ◽  
Vol 247 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Ming-Tsan Liu ◽  
Tsuey-Ying Hsu ◽  
Jen-Yang Chen ◽  
Czau-Siung Yang

2002 ◽  
Vol 76 (3) ◽  
pp. 1025-1032 ◽  
Author(s):  
Michiko Tanaka ◽  
Akihiko Yokoyama ◽  
Mie Igarashi ◽  
Go Matsuda ◽  
Kentaro Kato ◽  
...  

ABSTRACT Self-association of viral proteins is important for many of their functions, including enzymatic, transcriptional, and transformational activities. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) contains various numbers of W1W2 repeats and a unique carboxyl-terminal Y1Y2 domain. It was reported that EBNA-LP associates with a variety of cellular proteins and plays a critical role in EBV-induced transformation. We report here that EBNA-LP self-associates in vivo and the domain responsible for the homotypic association is a multifunctional domain mediating nuclear localization, nuclear matrix association, and EBNA-2-dependent coactivator function of the protein. Our conclusions are based on the following observations. (i) EBNA-LP interacts with itself or its derivatives in the yeast two-hybrid system. (ii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with EBNA-LP transiently expressed in COS-7 cells. (iii) When Flag epitope-tagged EBNA-LP with either one or two W1W2 repeats and EBNA-LP containing four W1W2 repeats were coexpressed in COS-7 cells, the latter was specifically coimmunoprecipitated with the former. (iv) Mutational analyses of EBNA-LP with deletion mutants revealed that the region between codons 19 and 39 (relative to the first amino acid residue of the W2 domain) is essential for self-association of the protein. The mapped region almost completely overlaps with CR2 and CR3, regions conserved among a subset of primate γ-herpesviruses and critical for EBNA-2-dependent coactivator function. Amino acid substitutions in CR2 alone abolished the ability of the protein to self-interact. This laboratory previously reported that CR2 is also responsible for nuclear localization and nuclear matrix association (A. Yokoyama, Y. Kawaguchi, I. Kitabayashi, M. Ohki, and K. Hirai, Virology 279:401–413, 2001). (v) Sucrose gradient sedimentation showed that amino acid substitutions in CR2 reduced the ability of the protein to form protein complexes in B cells. These results suggest that self-association of EBNA-LP may be important for its various functions and interactions of the protein with multiple cellular proteins.


2008 ◽  
Vol 89 (4) ◽  
pp. 884-895 ◽  
Author(s):  
Pei-Wen Yang ◽  
Shih-Shin Chang ◽  
Ching-Hwa Tsai ◽  
Yi-Hsin Chao ◽  
Mei-Ru Chen

Modification of human herpesvirus DNA polymerase processivity factors (PFs) by phosphorylation occurs frequently during viral lytic replication. However, functional regulation of the herpesvirus PFs through phosphorylation is not well understood. In addition to processivity, the PF BMRF1 of Epstein–Barr virus can function as a transactivator to activate the BHLF1 promoter within the lytic origin of replication (oriLyt), which is assumed to facilitate DNA replication through remodelling viral chromatin structure. BMRF1 is known to be phosphorylated by the viral BGLF4 kinase, but its impact on BMRF1 function is unclear. Seven candidate BGLF4 target sites were predicted within a proline-rich region between the DNA-processivity and nuclear-localization domains of BMRF1. We show that four of these residues, Ser-337, Thr-344, Ser-349 and Thr-355, are responsible for the BGLF4-induced hyperphosphorylation of BMRF1. In functional analyses, a phosphorylation-mimicking mutant of BMRF1 shows similar nuclear localization, as well as DNA-binding ability, to the wild type; however, it displays stronger synergistic activation of the BHLF1 promoter with Zta. Notably, BGLF4 downregulates BMRF1 transactivation and enhances the transactivation activity of Zta and the synergistic activation of BMRF1 and Zta on the BHLF1 promoter. Our findings suggest that BGLF4 may modulate the activation of the oriLyt BHLF1 promoter coordinately through multiple mechanisms to facilitate optimal oriLyt-dependent viral DNA replication.


2004 ◽  
Vol 78 (22) ◽  
pp. 12140-12146 ◽  
Author(s):  
E. Gershburg ◽  
M. Marschall ◽  
K. Hong ◽  
J. S. Pagano

ABSTRACT The protein kinase (PK) encoded by the Epstein-Barr Virus (EBV) BGLF4 gene is the only EBV protein kinase. The expression pattern of EBV PK during the reactivation of the viral lytic cycle and the subcellular localization of the protein were analyzed with a polyclonal antiserum raised against a peptide corresponding to the N terminus of EBV PK. Based on previously published data (E. Gershburg and J. S. Pagano, J. Virol. 76:998-1003, 2002) and the expression pattern described here, we conclude that EBV PK is an early protein that requires viral-DNA replication for maximum expression. By biochemical fractionation, the protein could be detected mainly in the nuclear fraction 4 h after viral reactivation in Akata cells. Nuclear localization could be visualized by indirect immunofluorescence in HeLa cells transiently expressing EBV BGLF4 in the absence of other viral products. Transient expression of 3′-terminal deletion mutants of EBV BGLF4 resulted in cytoplasmic localization, confirming the presence of a nuclear localization site in the C-terminal region of the protein. In contrast to the wild-type EBV PK, all of the mutants were unable to hyperphosphorylate EA-D during coexpression or to phosphorylate ganciclovir, as measured by an in-cell activity assay. Thus, the results demonstrate that the nuclear localization, as well as the kinase activity, of BGFL4 is dependent on an intact C-terminal region.


2020 ◽  
Author(s):  
Meili Li ◽  
Yingjie Guo ◽  
Yangxi Deng ◽  
Yiwen Li ◽  
Xiaowen Ou ◽  
...  

Abstract Background: Epstein-Barr virus (EBV), the pathogen of several human malignancies, encodes many proteins that require to be transported into the nucleus for viral DNA reproduction and nucleocapsids assembly in the lytic replication cycle. A nuclear membrane phosphoprotein encoded by EBV BLLF2, is believed to associate with viral DNA packaging and primary egress across the nuclear membrane. Results: Here, fluorescence microscope, mutation analysis, interspecies heterokaryon assays, co-immunoprecipitation assays and western blot were performed to explore the nuclear import mechanism of BLLF2. As results, BLLF2 was shown to be a nucleocytoplasmic shuttling protein, which was mediated neither by chromosomal region maintenance 1 (CRM1)- nor transporter associated with antigen processing (TAP)-dependent pathway. Yet, two functional nuclear localization signals (NLSs) of BLLF2, NLS1 (16KRQALETVPHPQNRGR31) and NLS2 (48PPVAKRRR58), were identified, whereas the predicted NES was nonfunctional. Finally, BLLF2 was proved to transport into the nucleus via Ran-dependent and importin β1-dependent pathway. Conclusions: This mechanism may contribute to a more extensive insight of the assembly and synthesis of EB virions in the nucleus, thus affording a new direction for the treatment of viruses.


Virology ◽  
2008 ◽  
Vol 382 (2) ◽  
pp. 145-162 ◽  
Author(s):  
Richard Park ◽  
Lee Heston ◽  
Duane Shedd ◽  
Henri-Jacques Delecluse ◽  
George Miller

2019 ◽  
Vol 94 (3) ◽  
Author(s):  
Yu-Ching Dai ◽  
Yen-Tzu Liao ◽  
Yi-Ting Juan ◽  
Yi-Ying Cheng ◽  
Mei-Tzu Su ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) genomic DNA is replicated and packaged into procapsids in the nucleus to form nucleocapsids, which are then transported into the cytoplasm for tegumentation and final maturation. The process is facilitated by the coordination of the viral nuclear egress complex (NEC), which consists of BFLF2 and BFRF1. By expression alone, BFLF2 is distributed mainly in the nucleus. However, it colocalizes with BFRF1 at the nuclear rim and in cytoplasmic nuclear envelope-derived vesicles in coexpressing cells, suggesting temporal control of the interaction between BFLF2 and BFRF1 is critical for their proper function. The N-terminal sequence of BFLF2 is less conserved than that of alpha- and betaherpesvirus homologs. Here, we found that BFLF2 amino acids (aa) 2 to 102 are required for both nuclear targeting and its interaction with BFRF1. Coimmunoprecipitation and confocal analysis indicated that aa 82 to 106 of BFLF2 are important for its interaction with BFRF1. Three crucial amino acids (R47, K50, and R52) and several noncontinuous arginine and histidine residues within aa 59 to 80 function together as a noncanonical nuclear localization signal (NLS), which can be transferred onto yellow fluorescent protein (YFP)-LacZ for nuclear targeting in an importin β-dependent manner. Virion secretion is defective in 293 cells harboring a BFLF2 knockout EBV bacmid upon lytic induction and is restored by trans-complementation of wild-type BFLF2, but not NLS or BFRF1-interacting defective mutants. In addition, multiple domains of BFRF1 were found to bind BFLF2, suggesting multiple contact regions within BFRF1 and BFLF2 are required for proper nuclear egress of EBV nucleocapsids. IMPORTANCE Although Epstein-Barr virus (EBV) BFRF1 and BFLF2 are homologs of conserved viral nuclear egress complex (NEC) in all human herpesviruses, unique amino acid sequences and functions were identified in both proteins. In this study, the nuclear targeting and BFRF1-interacting domains were found within the N terminus of BFLF2. We showed that amino acids (aa) 82 to 106 are the major region required for BFLF2 to interact with BFRF1. However, the coimmunoprecipitation (Co-IP) data and glutathione transferase (GST) pulldown experiments revealed that multiple regions of both proteins contribute to reciprocal interactions. Different from the canonical nuclear localization signal (NLS) in other herpes viral homologs, BFLF2 contains a novel importin-dependent nuclear localization signal, including R47, K50, and R52 and several neighboring discontinuous arginine and histidine residues. Using a bacmid complementation system, we show that both the nuclear targeting and the novel nuclear localization signal within aa 82 to 106 of BFLF2 are required for virion secretion.


Sign in / Sign up

Export Citation Format

Share Document