viral proteins
Recently Published Documents


TOTAL DOCUMENTS

1516
(FIVE YEARS 493)

H-INDEX

81
(FIVE YEARS 10)

2022 ◽  
Vol 8 ◽  
Author(s):  
Elnaz Aledavood ◽  
Beatrice Selmi ◽  
Carolina Estarellas ◽  
Matteo Masetti ◽  
F. Javier Luque

With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.


2022 ◽  
Vol 8 ◽  
Author(s):  
Tinghan Li ◽  
Yibo Wen ◽  
Hangtian Guo ◽  
Tingting Yang ◽  
Haitao Yang ◽  
...  

The accessory protein Orf6 is uniquely expressed in sarbecoviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is an ongoing pandemic. SARS-CoV-2 Orf6 antagonizes host interferon signaling by inhibition of mRNA nuclear export through its interactions with the ribonucleic acid export 1 (Rae1)–nucleoporin 98 (Nup98) complex. Here, we confirmed the direct tight binding of Orf6 to the Rae1-Nup98 complex, which competitively inhibits RNA binding. We determined the crystal structures of both SARS-CoV-2 and SARS-CoV-1 Orf6 C-termini in complex with the Rae1–Nup98 heterodimer. In each structure, SARS-CoV Orf6 occupies the same potential mRNA-binding groove of the Rae1–Nup98 complex, comparable to the previously reported structures of other viral proteins complexed with Rae1-Nup98, indicating that the Rae1–Nup98 complex is a common target for different viruses to impair the nuclear export pathway. Structural analysis and biochemical studies highlight the critical role of the highly conserved methionine (M58) of SARS-CoVs Orf6. Altogether our data unravel a mechanistic understanding of SARS-CoVs Orf6 targeting the mRNA-binding site of the Rae1–Nup98 complex to compete with the nuclear export of host mRNA, which further emphasizes that Orf6 is a critical virulence factor of SARS-CoVs.


2022 ◽  
Vol 23 (2) ◽  
pp. 643
Author(s):  
Izchel Figarola-Centurión ◽  
Martha Escoto-Delgadillo ◽  
Gracia Viviana González-Enríquez ◽  
Juan Ernesto Gutiérrez-Sevilla ◽  
Eduardo Vázquez-Valls ◽  
...  

HIV-Associated neurocognitive disorder (HAND) is one of the major concerns since it persists in 40% of this population. Nowadays, HAND neuropathogenesis is considered to be caused by the infected cells that cross the brain–blood barrier and produce viral proteins that can be secreted and internalized into neurons leading to disruption of cellular processes. The evidence points to viral proteins such as Tat as the causal agent for neuronal alteration and thus HAND. The hallmarks in Tat-induced neurodegeneration are endoplasmic reticulum stress and mitochondrial dysfunction. Sirtuins (SIRTs) are NAD+-dependent deacetylases involved in mitochondria biogenesis, unfolded protein response, and intrinsic apoptosis pathway. Tat interaction with these deacetylases causes inhibition of SIRT1 and SIRT3. Studies revealed that SIRTs activation promotes neuroprotection in neurodegenerative diseases such Alzheimer’s and Parkinson’s disease. Therefore, this review focuses on Tat-induced neurotoxicity mechanisms that involve SIRTs as key regulators and their modulation as a therapeutic strategy for tackling HAND and thereby improving the quality of life of people living with HIV.


2022 ◽  
Vol 12 ◽  
Author(s):  
Justin D. Shepard ◽  
Brendan T. Freitas ◽  
Sergio E. Rodriguez ◽  
Florine E. M. Scholte ◽  
Kailee Baker ◽  
...  

Post-translational modification of host and viral proteins by ubiquitin and ubiquitin-like proteins plays a key role in a host’s ability to mount an effective immune response. Avian species lack a ubiquitin-like protein found in mammals and other non-avian reptiles; interferon stimulated gene product 15 (ISG15). ISG15 serves as a messenger molecule and can be conjugated to both host and viral proteins leading them to be stabilized, degraded, or sequestered. Structurally, ISG15 is comprised of a tandem ubiquitin-like domain (Ubl), which serves as the motif for post-translational modification. The 2’-5’ oligoadenylate synthetase-like proteins (OASL) also encode two Ubl domains in series near its C-terminus which binds OASL to retinoic acid inducible gene-I (RIG-I). This protein-protein interaction increases the sensitivity of RIG-I and results in an enhanced production of type 1 interferons and a robust immune response. Unlike human and other mammalian OASL homologues, avian OASLs terminate their tandem Ubl domains with the same LRLRGG motif found in ubiquitin and ISG15, a motif required for their conjugation to proteins. Chickens, however, lack RIG-I, raising the question of structural and functional characteristics of chicken OASL (chOASL). By investigating chOASL, the evolutionary history of viruses with deubiquitinases can be explored and drivers of species specificity for these viruses may be uncovered. Here we show that the chOASL tandem Ubl domains shares structural characteristics with mammalian ISG15, and that chOASL can oligomerize and conjugate to itself. In addition, the ISG15-like features of avian OASLs and how they impact interactions with viral deubiquitinases and deISGylases are explored.


2022 ◽  
Vol 23 (1) ◽  
pp. 489
Author(s):  
Sailen Barik

Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.


2021 ◽  
pp. 1-19
Author(s):  
Nirupma Singh ◽  
Sneha Rai ◽  
Rakesh Bhatnagar ◽  
Sonika Bhatnagar

Large-scale visualization and analysis of HPIs involved in microbial CVDs can provide crucial insights into the mechanisms of pathogenicity. The comparison of CVD associated HPIs with the entire set of HPIs can identify the pathways specific to CVDs. Therefore, topological properties of HPI networks in CVDs and all pathogens was studied using Cytoscape3.5.1. Ontology and pathway analysis were done using KOBAS 3.0. HPIs of Papilloma, Herpes, Influenza A virus as well as Yersinia pestis and Bacillus anthracis among bacteria were predominant in the whole (wHPI) and the CVD specific (cHPI) network. The central viral and secretory bacterial proteins were predicted virulent. The central viral proteins had higher number of interactions with host proteins in comparison with bacteria. Major fraction of central and essential host proteins interacts with central viral proteins. Alpha-synuclein, Ubiquitin ribosomal proteins, TATA-box-binding protein, and Polyubiquitin-C &B proteins were the top interacting proteins specific to CVDs. Signaling by NGF, Fc epsilon receptor, EGFR and ubiquitin mediated proteolysis were among the top enriched CVD specific pathways. DEXDc and HELICc were enriched host mimicry domains that may help in hijacking of cellular machinery by pathogens. This study provides a system level understanding of cardiac damage in microbe induced CVDs.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Beatrice Cavalluzzo ◽  
Angela Mauriello ◽  
Concetta Ragone ◽  
Carmen Manolio ◽  
Maria Lina Tornesello ◽  
...  

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, only a few treatments are available, most of which are effective only for the early stages of the disease. Therefore, there is an urgent needing for potential markers for a specifically targeted therapy. Candidate proteins were selected from datasets of The Human Protein Atlas, in order to identify specific tumor-associated proteins overexpressed in HCC samples associated with poor prognosis. Potential epitopes were predicted from such proteins, and homology with peptides derived from viral proteins was assessed. A multiparametric validation was performed, including recognition by PBMCs from HCC-patients and healthy donors, showing a T-cell cross-reactivity with paired epitopes. These results provide novel HCC-specific tumor-associated antigens (TAAs) for immunotherapeutic anti-HCC strategies potentially able to expand pre-existing virus-specific CD8+ T cells with superior anticancer efficacy.


2021 ◽  
Author(s):  
Tomohisa Tanaka ◽  
Akatsuki Saito ◽  
Tatsuya Suzuki ◽  
Yoichi Miyamoto ◽  
Kazuo Takayama ◽  
...  

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-β but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-β. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


2021 ◽  
Author(s):  
Tanner Roy Wiegand ◽  
Aidan McVey ◽  
Anna Nemudraia ◽  
Artem Nemudryi ◽  
Blake Wiedenheft

In late December of 2019, high throughput sequencing technologies enabled rapid identification of SARS-CoV-2 as the etiological agent of COVID-19, and global sequencing efforts are now a critical tool for monitoring the ongoing spread and evolution of this virus. Here, we analyze a subset (n=87,032) of all publicly available SARS-CoV-2 genomes (n=~5.6 million) that were randomly selected, but equally distributed over the course of the pandemic. We plot the appearance of new variants of concern (VOCs) over time and show that the mutation rates in Omicron viruses are significantly greater than those in previously identified SARS-CoV-2 variants. Mutations in Omicron are primarily restricted to the spike protein, while 25 other viral proteins—including those involved in SARS-CoV-2 replication—are highly conserved. Collectively, this suggests that the genetic distinction of Omicron primarily arose from selective pressures on the spike, and that the fidelity of replication of this variant has not been altered.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261497
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Farah Anjum ◽  
Alaa Shafie ◽  
Sufian Badar ◽  
Abdelbaset Mohamed Elasbali ◽  
...  

Since the emergence of yellow fever in the Americas and the devastating 1918 influenza pandemic, biologists and clinicians have been drawn to human infecting viruses to understand their mechanisms of infection better and develop effective therapeutics against them. However, the complex molecular and cellular processes that these viruses use to infect and multiply in human cells have been a source of great concern for the scientific community since the discovery of the first human infecting virus. Viral disease outbreaks, such as the recent COVID-19 pandemic caused by a novel coronavirus, have claimed millions of lives and caused significant economic damage worldwide. In this study, we investigated the mechanisms of host-virus interaction and the molecular machinery involved in the pathogenesis of some common human viruses. We also performed a phylogenetic analysis of viral proteins involved in host-virus interaction to understand the changes in the sequence organization of these proteins during evolution for various strains of viruses to gain insights into the viral origin’s evolutionary perspectives.


Sign in / Sign up

Export Citation Format

Share Document