scholarly journals GO-PCA: An Unsupervised Method to Explore Biological Heterogeneity Based on Gene Expression and Prior Knowledge

2015 ◽  
Author(s):  
Florian Wagner

Genome-wide expression profiling is a cost-efficient and widely used method to characterize heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such datasets typically relies on generic unsupervised methods, e.g. principal component analysis or hierarchical clustering. However, generic methods fail to exploit the significant amount of knowledge that exists about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that incorporates prior knowledge about gene functions in the form of gene ontology (GO) annotations. GO-PCA aims to discover and represent biological heterogeneity along all major axes of variation in a given dataset, while suppressing heterogeneity due to technical biases. To this end, GO-PCA combines principal component analysis (PCA) with nonparametric GO enrichment analysis, and uses the results to generate expression signatures based on small sets of functionally related genes. I first applied GO-PCA to expression data from diverse lineages of the human hematopoietic system, and obtained a small set of signatures that captured known cell characteristics for most lineages. I then applied the method to expression profiles of glioblastoma (GBM) tumor biopsies, and obtained signatures that were strongly associated with multiple previously described GBM subtypes. Surprisingly, GO-PCA discovered a cell cycle-related signature that exhibited significant differences between the Proneural and the prognostically favorable GBM CpG Island Methylator (G-CIMP) subtypes, suggesting that the G-CIMP subtype is characterized in part by lower mitotic activity. Previous expression-based classifications have failed to separate these subtypes, demonstrating that GO-PCA can detect heterogeneity that is missed by other methods. My results show that GO-PCA is a powerful and versatile expression-based method that facilitates exploration of large-scale expression data, without requiring additional types of experimental data. The low-dimensional representation generated by GO-PCA lends itself to interpretation, hypothesis generation, and further analysis.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4117
Author(s):  
Y-h. Taguchi ◽  
Turki Turki

The development of the medical applications for substances or materials that contact cells is important. Hence, it is necessary to elucidate how substances that surround cells affect gene expression during incubation. In the current study, we compared the gene expression profiles of cell lines that were in contact with collagen–glycosaminoglycan mesh and control cells. Principal component analysis-based unsupervised feature extraction was applied to identify genes with altered expression during incubation in the treated cell lines but not in the controls. The identified genes were enriched in various biological terms. Our method also outperformed a conventional methodology, namely, gene selection based on linear regression with time course.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 548 ◽  
Author(s):  
Yuqing Sun ◽  
Jun Niu

Hydrological regionalization is a useful step in hydrological modeling and prediction. The regionalization is not always straightforward, however, due to the lack of long-term hydrological data and the complex multi-scale variability features embedded in the data. This study examines the multiscale soil moisture variability for the simulated data on a grid cell base obtained from a large-scale hydrological model, and clusters the grid-cell based soil moisture data using wavelet-based multiscale entropy and principal component analysis, over the Xijiang River basin in South China, for the period of 2002–2010. The effective regionalization, for 169 grid cells with the special resolution of 0.5° × 0.5°, produced homogeneous groups based on the pattern of wavelet-based entropy information. Four distinct modes explain 80.14% of the total embedded variability of the transformed wavelet power across different timescales. Moreover, the possible implications of the regionalization results for local hydrological applications, such as parameter estimation for an ungagged catchment and designing a uniform prediction strategy for a sub-area in a large-scale basin, are discussed.


Sign in / Sign up

Export Citation Format

Share Document