scholarly journals Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis

2016 ◽  
Author(s):  
Darpan Medhi ◽  
Alastair S. H. Goldman ◽  
Michael Lichten

AbstractMeiotic chromosomes are divided into regions of enrichment and depletion for meiotic chromosome axis proteins, in budding yeast Hop1 and Red1. These proteins are important for formation of Spo11-catalyzed DSB, but their contribution to crossover recombination is undefined. By studying meiotic recombination initiated by the sequence-specificVMA1-derived endonuclease (VDE), we show that meiotic chromosome structure helps to determine the biochemical mechanism by which recombination intermediates are resolved to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers required the MutLγ resolvase, which forms most Spo11-initiated crossovers. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. Inpch2mutants, the two loci displayed similar Hop1 occupancy levels, and also displayed similar MutLγ-dependence of VDE-induced crossovers. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, with features of meiotic chromosome structure partitioning the genome into regions where one pathway or the other predominates.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Darpan Medhi ◽  
Alastair SH Goldman ◽  
Michael Lichten

The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alan MV West ◽  
Scott C Rosenberg ◽  
Sarah N Ur ◽  
Madison K Lehmer ◽  
Qiaozhen Ye ◽  
...  

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that ‘axis core proteins’ from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify ‘closure motifs’ in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Xiaoji Sun ◽  
Lingzhi Huang ◽  
Tovah E Markowitz ◽  
Hannah G Blitzblau ◽  
Doris Chen ◽  
...  

Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus chromosome compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation nearby. A separate modulating mechanism that requires the conserved axial-element component Hop1 biases axis protein binding towards small chromosomes. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the axial element to promote recombination while easily adapting to changes in chromosome activity.


2019 ◽  
Vol 116 (37) ◽  
pp. 18423-18428 ◽  
Author(s):  
Huizhong Xu ◽  
Zhisong Tong ◽  
Qing Ye ◽  
Tengqian Sun ◽  
Zhenmin Hong ◽  
...  

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure’s lateral elements (LEs). While the components of the mammalian chromosome axis/LE—including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2—are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


Chromosoma ◽  
2021 ◽  
Author(s):  
Da-Qiao Ding ◽  
Atsushi Matsuda ◽  
Kasumi Okamasa ◽  
Yasushi Hiraoka

AbstractThe structure of chromosomes dramatically changes upon entering meiosis to ensure the successful progression of meiosis-specific events. During this process, a multilayer proteinaceous structure called a synaptonemal complex (SC) is formed in many eukaryotes. However, in the fission yeast Schizosaccharomyces pombe, linear elements (LinEs), which are structures related to axial elements of the SC, form on the meiotic cohesin-based chromosome axis. The structure of LinEs has been observed using silver-stained electron micrographs or in immunofluorescence-stained spread nuclei. However, the fine structure of LinEs and their dynamics in intact living cells remain to be elucidated. In this study, we performed live cell imaging with wide-field fluorescence microscopy as well as 3D structured illumination microscopy (3D-SIM) of the core components of LinEs (Rec10, Rec25, Rec27, Mug20) and a linE-binding protein Hop1. We found that LinEs form along the chromosome axis and elongate during meiotic prophase. 3D-SIM microscopy revealed that Rec10 localized to meiotic chromosomes in the absence of other LinE proteins, but shaped into LinEs only in the presence of all three other components, the Rec25, Rec27, and Mug20. Elongation of LinEs was impaired in double-strand break-defective rec12− cells. The structure of LinEs persisted after treatment with 1,6-hexanediol and showed slow fluorescence recovery from photobleaching. These results indicate that LinEs are stable structures resembling axial elements of the SC.


1999 ◽  
Vol 147 (2) ◽  
pp. 207-220 ◽  
Author(s):  
Madalena Tarsounas ◽  
Takashi Morita ◽  
Ronald E. Pearlman ◽  
Peter B. Moens

The eukaryotic RecA homologues RAD51 and DMC1 function in homology recognition and formation of joint-molecule recombination intermediates during yeast meiosis. The precise immunolocalization of these two proteins on the meiotic chromosomes of plants and animals has been complicated by their high degree of identity at the amino acid level. With antibodies that have been immunodepleted of cross-reactive epitopes, we demonstrate that RAD51 and DMC1 have identical distribution patterns in extracts of mouse spermatocytes in successive prophase I stages, suggesting coordinate functionality. Immunofluorescence and immunoelectron microscopy with these antibodies demonstrate colocalization of the two proteins on the meiotic chromosome cores at early prophase I. We also show that mouse RAD51 and DMC1 establish protein–protein interactions with each other and with the chromosome core component COR1(SCP3) in a two-hybrid system and in vitro binding analyses. These results suggest that the formation of a multiprotein recombination complex associated with the meiotic chromosome cores is essential for the development and fulfillment of the meiotic recombination process.


2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Sarah N. Ur ◽  
Kevin D. Corbett

The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Miki Shinohara

Dynamic changes in chromosomal structure that occur during meiotic prophase play an important role in the progression of meiosis. Among them, meiosis-specific chromosomal axis-loop structures are important as a scaffold for integrated control between the meiotic recombination reaction and the associated checkpoint system to ensure accurate chromosome segregation. However, the molecular mechanism of the initial step of chromosome axis-loop construction is not well understood. Here, we showed that, in budding yeast, a Tel1/Mec1-related protein phosphatase 4 (PP4) is required to promote the assembly of a chromosomal axis components Hop1 and Red1 onto meiotic chromatin via interaction with Hop1. PP4 did not affect Rec8 assembly. Notably, unlike the previously known function of PP4, this novel function was independent of Tel1/Mec1 kinase functions. The defect in Hop1/Red1 assembly in the absence of PP4 function was not suppressed by Pch2 dysfunction. Since Pch2 is a conserved AAA+ ATPase and facilitates eviction of Hop1 protein from the chromosome axis, suggesting that PP4 is required for the initial step of chromatin loading of Hop1 rather than stabilizing Hop1 on the chromosome axis. These results indicate phosphorylation/dephosphorylation-mediated regulation of Hop1 recruitment onto chromatin during chromosome axis construction before meiotic double-strand break formation.


2008 ◽  
Vol 180 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Ivana Novak ◽  
Hong Wang ◽  
Ekaterina Revenkova ◽  
Rolf Jessberger ◽  
Harry Scherthan ◽  
...  

Meiotic chromosomes consist of proteinaceous axial structures from which chromatin loops emerge. Although we know that loop density along the meiotic chromosome axis is conserved in organisms with different genome sizes, the basis for the regular spacing of chromatin loops and their organization is largely unknown. We use two mouse model systems in which the postreplicative meiotic chromosome axes in the mutant oocytes are either longer or shorter than in wild-type oocytes. We observe a strict correlation between chromosome axis extension and a general and reciprocal shortening of chromatin loop size. However, in oocytes with a shorter chromosome axis, only a subset of the chromatin loops is extended. We find that the changes in chromatin loop size observed in oocytes with shorter or longer chromosome axes depend on the structural maintenance of chromosomes 1β (Smc1β), a mammalian chromosome–associated meiosis-specific cohesin. Our results suggest that in addition to its role in sister chromatid cohesion, Smc1β determines meiotic chromatin loop organization.


Sign in / Sign up

Export Citation Format

Share Document