scholarly journals Reward-based training of recurrent neural networks for cognitive and value-based tasks

2016 ◽  
Author(s):  
H. Francis Song ◽  
Guangyu R. Yang ◽  
Xiao-Jing Wang

AbstractTrained neural network models, which exhibit many features observed in neural recordings from behaving animals and whose activity and connectivity can be fully analyzed, may provide insights into neural mechanisms. In contrast to commonly used methods for supervised learning from graded error signals, however, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when the optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we describe reward-based training of recurrent neural networks in which a value network guides learning by using the selected actions and activity of the policy network to predict future reward. We show that such models capture both behavioral and electrophysiological findings from well-known experimental paradigms. Our results provide a unified framework for investigating diverse cognitive and value-based computations, including a role for value representation that is essential for learning, but not executing, a task.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
H Francis Song ◽  
Guangyu R Yang ◽  
Xiao-Jing Wang

Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly used to train networks through supervised learning, animals learn from reward feedback on definite actions through reinforcement learning. Reward maximization is particularly relevant when optimal behavior depends on an animal’s internal judgment of confidence or subjective preferences. Here, we implement reward-based training of recurrent neural networks in which a value network guides learning by using the activity of the decision network to predict future reward. We show that such models capture behavioral and electrophysiological findings from well-known experimental paradigms. Our work provides a unified framework for investigating diverse cognitive and value-based computations, and predicts a role for value representation that is essential for learning, but not executing, a task.


Author(s):  
Makhamisa Senekane ◽  
Mhlambululi Mafu ◽  
Molibeli Benedict Taele

Weather variations play a significant role in peoples’ short-term, medium-term or long-term planning. Therefore, understanding of weather patterns has become very important in decision making. Short-term weather forecasting (nowcasting) involves the prediction of weather over a short period of time; typically few hours. Different techniques have been proposed for short-term weather forecasting. Traditional techniques used for nowcasting are highly parametric, and hence complex. Recently, there has been a shift towards the use of artificial intelligence techniques for weather nowcasting. These include the use of machine learning techniques such as artificial neural networks. In this chapter, we report the use of deep learning techniques for weather nowcasting. Deep learning techniques were tested on meteorological data. Three deep learning techniques, namely multilayer perceptron, Elman recurrent neural networks and Jordan recurrent neural networks, were used in this work. Multilayer perceptron models achieved 91 and 75% accuracies for sunshine forecasting and precipitation forecasting respectively, Elman recurrent neural network models achieved accuracies of 96 and 97% for sunshine and precipitation forecasting respectively, while Jordan recurrent neural network models achieved accuracies of 97 and 97% for sunshine and precipitation nowcasting respectively. The results obtained underline the utility of using deep learning for weather nowcasting.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 54
Author(s):  
Pietro Casabianca ◽  
Yu Zhang

Multirotor UAVs have become ubiquitous in commercial and public use. As they become more affordable and more available, the associated security risks further increase, especially in relation to airspace breaches and the danger of drone-to-aircraft collisions. Thus, robust systems must be set in place to detect and deal with hostile drones. This paper investigates the use of deep learning methods to detect UAVs using acoustic signals. Deep neural network models are trained with mel-spectrograms as inputs. In this case, Convolutional Neural Networks (CNNs) are shown to be the better performing network, compared with Recurrent Neural Networks (RNNs) and Convolutional Recurrent Neural Networks (CRNNs). Furthermore, late fusion methods have been evaluated using an ensemble of deep neural networks, where the weighted soft voting mechanism has achieved the highest average accuracy of 94.7%, which has outperformed the solo models. In future work, the developed late fusion technique could be utilized with radar and visual methods to further improve the UAV detection performance.


Author(s):  
Matthias G Haberl ◽  
Willy Wong ◽  
Sean Penticoff ◽  
Jihyeon Je ◽  
Matthew Madany ◽  
...  

AbstractSharing deep neural networks and testing the performance of trained networks typically involves a major initial commitment towards one algorithm, before knowing how the network will perform on a different dataset. Here we release a free online tool, CDeep3M-Preview, that allows end-users to rapidly test the performance of any of the pre-trained neural network models hosted on the CIL-CDeep3M modelzoo. This feature makes part of a set of complementary strategies we employ to facilitate sharing, increase reproducibility and enable quicker insights into biology. Namely we: (1) provide CDeep3M deep learning image segmentation software through cloud applications (Colab and AWS) and containerized installations (Docker and Singularity) (2) co-hosting trained deep neural networks with the relevant microscopy images and (3) providing a CDeep3M-Preview feature, enabling quick tests of trained networks on user provided test data or any of the publicly hosted large datasets. The CDeep3M-modelzoo and the cellimagelibrary.org are open for contributions of both, trained models as well as image datasets by the community and all services are free of charge.


2019 ◽  
Author(s):  
Silvan C. Quax ◽  
Michele D’Asaro ◽  
Marcel A. J. van Gerven

AbstractRecurrent neural network models have become widely used in computational neuroscience to model the dynamics of neural populations as well as in machine learning applications to model data with temporal dependencies. The different variants of RNNs commonly used in these scientific fields can be derived as discrete time approximations of the instantaneous firing rate of a population of neurons. The time constants of the neuronal process are generally ignored in these approximations, while learning these time constants could possibly inform us about the time scales underlying temporal processes and enhance the expressive capacity of the network. To investigate the potential of adaptive time constants, we compare the standard Elman approximation to a more lenient one that still accounts for the time scales at which processes unfold. We show that such a model with adaptive time scales performs better on predicting temporal data, increasing the memory capacity of recurrent neural networks, and allows recovery of the time scales at which the underlying processes unfold.


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

Author(s):  
Fathi Ahmed Ali Adam, Mahmoud Mohamed Abdel Aziz Gamal El-Di

The study examined the use of artificial neural network models to predict the exchange rate in Sudan through annual exchange rate data between the US dollar and the Sudanese pound. This study aimed to formulate the models of artificial neural networks in which the exchange rate can be predicted in the coming period. The importance of the study is that it is necessary to use modern models to predict instead of other classical models. The study hypothesized that the models of artificial neural networks have a high ability to predict the exchange rate. Use models of artificial neural networks. The most important results ability of artificial neural networks models to predict the exchange rate accurately, Form MLP (1-1-1) is the best model chosen for that purpose. The study recommended the development of the proposed model for long-term forecasting.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahana Priyanka ◽  
Kavitha Ganesan

Abstract The diagnostic and clinical overlap of early mild cognitive impairment (EMCI), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI) and Alzheimer disease (AD) is a vital oncological issue in dementia disorder. This study is designed to examine Whole brain (WB), grey matter (GM) and Hippocampus (HC) morphological variation and identify the prominent biomarkers in MR brain images of demented subjects to understand the severity progression. Curve evolution based on shape constraint is carried out to segment the complex brain structure such as HC and GM. Pre-trained models are used to observe the severity variation in these regions. This work is evaluated on ADNI database. The outcome of the proposed work shows that curve evolution method could segment HC and GM regions with better correlation. Pre-trained models are able to show significant severity difference among WB, GM and HC regions for the considered classes. Further, prominent variation is observed between AD vs. EMCI, AD vs. MCI and AD vs. LMCI in the whole brain, GM and HC. It is concluded that AlexNet model for HC region result in better classification for AD vs. EMCI, AD vs. MCI and AD vs. LMCI with an accuracy of 93, 78.3 and 91% respectively.


Sign in / Sign up

Export Citation Format

Share Document