scholarly journals Mean-field equations for neuronal networks with arbitrary degree distributions

2017 ◽  
Author(s):  
Duane Q. Nykamp ◽  
Daniel Friedman ◽  
Sammy Shaker ◽  
Maxwell Shinn ◽  
Michael Vella ◽  
...  

The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections which are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER), or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of pre-synaptic and post-synaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.

2017 ◽  
Vol 95 (4) ◽  
Author(s):  
Duane Q. Nykamp ◽  
Daniel Friedman ◽  
Sammy Shaker ◽  
Maxwell Shinn ◽  
Michael Vella ◽  
...  

1987 ◽  
Vol 35 (3) ◽  
pp. 1007-1027 ◽  
Author(s):  
G. Puddu ◽  
J. W. Negele

1993 ◽  
Vol 08 (06) ◽  
pp. 557-572 ◽  
Author(s):  
D.V. BOULATOV

A matrix model describing surfaces embedded in a Bethe lattice is considered. From the mean field point of view, it is equivalent to the Kazakov-Migdal induced gauge theory and therefore, at N=∞ and d>1, the latter can be interpreted as a matrix model for infinite-tension strings. We show that, in the naive continuum limit, it is governed by the one-matrix model saddle point with an upside-down potential. To derive mean field equations, we consider the one-matrix model in external field. As a simple application, its explicit solution in the case of the inverted W potential is given.


1980 ◽  
Vol 33 (1) ◽  
pp. 47 ◽  
Author(s):  
N Riahi

Nonlinear magnetic convection is investigated by the mean field approximation. The boundary layer method is used assuming large Rayleigh number R for different ranges of the Chandrasekhar number Q. The heat flux F is determined for wavenumbers CXn which optimize F. It is shown that there are a finite number of modes in the ranges Q ~ R2/3 and R2/3 ~ Q ~ R, and that the number of modes increases with increasing Q in the former range and decreases with increasing Q in the latter range. For Q = 0(R2/3) there are infinitely many modes, and F is proportional to Rl/3 While the optimal F is independent of Q for Q ~ Rl/2, it is found to decrease with increasing Q in the range Rl/2 ~ Q ~ R and eventually to become of 0(1) as Q -> OCR), and the layer becomes stable.


Sign in / Sign up

Export Citation Format

Share Document