scholarly journals Salience network dynamics underlying successful resistance of temptation

2017 ◽  
Author(s):  
Rosa Steimke ◽  
Jason S. Nomi ◽  
Vince D Calhoun ◽  
Christine Stelzel ◽  
Lena M. Paschke ◽  
...  

AbstractSelf-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate towards configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics, and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control.

2017 ◽  
Vol 39 (2) ◽  
pp. 811-821 ◽  
Author(s):  
Roger E. Beaty ◽  
Qunlin Chen ◽  
Alexander P. Christensen ◽  
Jiang Qiu ◽  
Paul J. Silvia ◽  
...  

NeuroImage ◽  
2021 ◽  
pp. 118852
Author(s):  
Brittany K. Taylor ◽  
Michaela R. Frenzel ◽  
Jacob A. Eastman ◽  
Christine M. Embury ◽  
Oktay Acgaoglu ◽  
...  

2011 ◽  
Vol 23 (12) ◽  
pp. 3903-3913 ◽  
Author(s):  
Tobias Egner

Conflict adaptation—a conflict-triggered improvement in the resolution of conflicting stimulus or response representations—has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous fMRI studies have localized activation foci associated with conflict resolution to dorsolateral PFC (dlPFC). The traditional group analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face–word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed while controlling for individual differences in mean RT and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral PFC (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ∼40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katherine G. Warthen ◽  
Robert C. Welsh ◽  
Benjamin Sanford ◽  
Vincent Koppelmans ◽  
Margit Burmeister ◽  
...  

Neuropeptide Y (NPY) is a neurotransmitter that has been implicated in the development of anxiety and mood disorders. Low levels of NPY have been associated with risk for these disorders, and high levels with resilience. Anxiety and depression are associated with altered intrinsic functional connectivity of brain networks, but the effect of NPY on functional connectivity is not known. Here, we test the hypothesis that individual differences in NPY expression affect resting functional connectivity of the default mode and salience networks. We evaluated static connectivity using graph theoretical techniques and dynamic connectivity with Leading Eigenvector Dynamics Analysis (LEiDA). To increase our power of detecting NPY effects, we genotyped 221 individuals and identified 29 healthy subjects at the extremes of genetically predicted NPY expression (12 high, 17 low). Static connectivity analysis revealed that lower levels of NPY were associated with shorter path lengths, higher global efficiency, higher clustering, higher small-worldness, and average higher node strength within the salience network, whereas subjects with high NPY expression displayed higher modularity and node eccentricity within the salience network. Dynamic connectivity analysis showed that the salience network of low-NPY subjects spent more time in a highly coordinated state relative to high-NPY subjects, and the salience network of high-NPY subjects switched between states more frequently. No group differences were found for static or dynamic connectivity of the default mode network. These findings suggest that genetically driven individual differences in NPY expression influence risk of mood and anxiety disorders by altering the intrinsic functional connectivity of the salience network.


2006 ◽  
Vol 14 (7S_Part_16) ◽  
pp. P907-P907
Author(s):  
Gloria Benson ◽  
Andrea Hildebrandt ◽  
Catharina Lange ◽  
Theresa Köbe ◽  
Claudia Schwarz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document