static connectivity
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 15 ◽  
Author(s):  
Katherine G. Warthen ◽  
Robert C. Welsh ◽  
Benjamin Sanford ◽  
Vincent Koppelmans ◽  
Margit Burmeister ◽  
...  

Neuropeptide Y (NPY) is a neurotransmitter that has been implicated in the development of anxiety and mood disorders. Low levels of NPY have been associated with risk for these disorders, and high levels with resilience. Anxiety and depression are associated with altered intrinsic functional connectivity of brain networks, but the effect of NPY on functional connectivity is not known. Here, we test the hypothesis that individual differences in NPY expression affect resting functional connectivity of the default mode and salience networks. We evaluated static connectivity using graph theoretical techniques and dynamic connectivity with Leading Eigenvector Dynamics Analysis (LEiDA). To increase our power of detecting NPY effects, we genotyped 221 individuals and identified 29 healthy subjects at the extremes of genetically predicted NPY expression (12 high, 17 low). Static connectivity analysis revealed that lower levels of NPY were associated with shorter path lengths, higher global efficiency, higher clustering, higher small-worldness, and average higher node strength within the salience network, whereas subjects with high NPY expression displayed higher modularity and node eccentricity within the salience network. Dynamic connectivity analysis showed that the salience network of low-NPY subjects spent more time in a highly coordinated state relative to high-NPY subjects, and the salience network of high-NPY subjects switched between states more frequently. No group differences were found for static or dynamic connectivity of the default mode network. These findings suggest that genetically driven individual differences in NPY expression influence risk of mood and anxiety disorders by altering the intrinsic functional connectivity of the salience network.


Author(s):  
Sisi Jiang ◽  
Hechun Li ◽  
Haonan Pei ◽  
Linli Liu ◽  
Zhiliang Li ◽  
...  

AAPG Bulletin ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 2943-2973 ◽  
Author(s):  
Allie Jackson ◽  
Lisa Stright ◽  
Stephen M. Hubbard ◽  
Brian W. Romans

Author(s):  
David D. Nolte

A language of nodes and links, degree and moments, and adjacency matrix and distance matrix, among others, is defined and used to capture the wide range of different types and properties of network topologies. Regular graphs and random graphs have fundamentally different connectivities that play a role in dynamic processes such as diffusion and synchronization on a network. Three common random graphs are the Erdös–Rényi (ER) graph, the small-world (SW) graph, and the scale-free (SF) graph. Random graphs give rise to critical phenomena based on static connectivity properties, such as the percolation threshold, but also exhibit dynamical thresholds for the diffusion of states across networks and the synchronization of oscillators. The vaccination threshold for diseases propagating on networks and the global synchronization transition in the Kuramoto model are examples of dynamical processes that can be used to probe network topologies.


2019 ◽  
Author(s):  
William Hedley Thompson ◽  
Jessey Wright ◽  
James M. Shine ◽  
Russell A. Poldrack

AbstractInteracting sets of nodes and fluctuations in their interaction are important properties of a dynamic network system. In some cases the edges reflecting these interactions are directly quantifiable from the data collected. However, in many cases (such as functional magnetic resonance imaging (fMRI) data), the edges must be inferred from statistical relations between the nodes. Here we present a new method, Temporal Communities through Trajectory Clustering (TCTC), that derives time-varying communities directly from time-series data collected from the nodes in a network. First, we verify TCTC on resting and task fMRI data by showing that time-averaged results correspond with expected static connectivity results. We then show that the time-varying communities correlate and predict single-trial behaviour. This new perspective on temporal community detection of node-collected data identifies robust communities revealing ongoing spatiotemporal community configurations during task performance.


2017 ◽  
Author(s):  
Zachary P Kilpatrick

SummaryInformation from preceding trials of cognitive tasks can bias performance in the current trial, a phenomenon referred to as interference. Subjects performing visual working memory tasks exhibit interference in their trial-to-trial response correlations: the recalled target location in the current trial is biased in the direction of the target presented on the previous trial. We present modeling work that (a) develops a probabilistic inference model of this history-dependent bias, and (b) links our probabilistic model to computations of a recurrent network wherein short-term facilitation accounts for the dynamics of the observed bias. Network connectivity is reshaped dynamically during each trial, providing a mechanism for generating predictions from prior trial observations. Applying timescale separation methods, we can obtain a low-dimensional description of the trial-to-trial bias based on the history of target locations. The model has response statistics whose mean is centered at the true target location across many trials, typical of such visual working memory tasks. Furthermore, we demonstrate task protocols for which the plastic model performs better than a model with static connectivity: repetitively presented targets are better retained in working memory than targets drawn from uncorrelated sequences.


Sign in / Sign up

Export Citation Format

Share Document