scholarly journals Making up your mind: Enhanced perceptual decision-making induced by stochastic resonance during non-invasive brain stimulation: Stochastic resonance in perceptual decision-making

2017 ◽  
Author(s):  
Onno van der Groen ◽  
Matthew F. Tang ◽  
Nicole Wenderoth ◽  
Jason B. Mattingley

Summary:Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence until a specified boundary is reached and an appropriate response is made. It might be assumed that adding noise to a stimulus, or to the neural systems involved in its processing, would interfere with the decision process. But it has been suggested that adding an optimal amount of noise can, under appropriate conditions, enhance the quality of subthreshold signals in nonlinear systems, a phenomenon known as stochastic resonance. Here we asked whether perceptual decisions obey these stochastic resonance principles by adding noise directly to the visual cortex using transcranial random noise stimulation (tRNS) while participants judged the direction of motion in foveally presented random-dot motion arrays. Consistent with the stochastic resonance account, we found that adding tRNS bilaterally to visual cortex enhanced decision-making when stimuli were just below, but not well below or above, perceptual threshold. We modelled the data under a drift diffusion framework to isolate the specific components of the multi-stage decision process that were influenced by the addition of neural noise. This modelling showed that tRNS increased drift rate, which indexes the rate of evidence accumulation, but had no effect on bound separation or non-decision time. These results were specific to bilateral stimulation of visual cortex; control experiments involving unilateral stimulation of left and right visual areas showed no influence of random noise stimulation. Our study is the first to provide causal evidence that perceptual decision-making is susceptible to a stochastic resonance effect induced by tRNS, and that this effect arises from selective enhancement of the rate of evidence accumulation for sub-threshold sensory events.


2018 ◽  
Vol 14 (7) ◽  
pp. e1006301 ◽  
Author(s):  
Onno van der Groen ◽  
Matthew F. Tang ◽  
Nicole Wenderoth ◽  
Jason B. Mattingley


Cortex ◽  
2021 ◽  
Author(s):  
Nicole R. Stefanac ◽  
Shou-Han Zhou ◽  
Megan M. Spencer-Smith ◽  
Redmond O’Connell ◽  
Mark A. Bellgrove


2021 ◽  
Vol 32 (9) ◽  
pp. 1494-1509
Author(s):  
Yuan Chang Leong ◽  
Roma Dziembaj ◽  
Mark D’Esposito

People’s perceptual reports are biased toward percepts they are motivated to see. The arousal system coordinates the body’s response to motivationally significant events and is well positioned to regulate motivational effects on perceptual judgments. However, it remains unclear whether arousal would enhance or reduce motivational biases. Here, we measured pupil dilation as a measure of arousal while participants ( N = 38) performed a visual categorization task. We used monetary bonuses to motivate participants to perceive one category over another. Even though the reward-maximizing strategy was to perform the task accurately, participants were more likely to report seeing the desirable category. Furthermore, higher arousal levels were associated with making motivationally biased responses. Analyses using computational models suggested that arousal enhanced motivational effects by biasing evidence accumulation in favor of desirable percepts. These results suggest that heightened arousal biases people toward what they want to see and away from an objective representation of the environment.



2019 ◽  
Vol 31 (7) ◽  
pp. 1044-1053 ◽  
Author(s):  
Gerard M. Loughnane ◽  
Méadhbh B. Brosnan ◽  
Jessica J. M. Barnes ◽  
Angela Dean ◽  
Sanjay L. Nandam ◽  
...  

Recent behavioral modeling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomized, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision-making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate and atomoxetine, and their effects were compared with those of citalopram and placebo. Participants performed a classic EEG oddball paradigm that elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that methylphenidate and atomoxetine administration shortened RTs to the oddball targets. The neural basis of this behavioral effect was an earlier P3b peak latency, driven specifically by an increase in its buildup rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision-making, that is, evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain.





Author(s):  
Loughnane Gerard ◽  
Newman Daniel ◽  
Bellgrove Mark ◽  
Lalor Edmund ◽  
Kelly Simon ◽  
...  


Neuroscience ◽  
2017 ◽  
Vol 343 ◽  
pp. 140-146 ◽  
Author(s):  
Tino Zaehle ◽  
Caroline Wagenbreth ◽  
Jürgen Voges ◽  
Hans-Jochen Heinze ◽  
Imke Galazky


2015 ◽  
Vol 27 (11) ◽  
pp. 2174-2185 ◽  
Author(s):  
Amir-Homayoun Javadi ◽  
Angeliki Beyko ◽  
Vincent Walsh ◽  
Ryota Kanai

One of the multiple interacting systems involved in the selection and execution of voluntary actions is the primary motor cortex (PMC). We aimed to investigate whether the transcranial direct current stimulation (tDCS) of this area can modulate hand choice. A perceptual decision-making task was administered. Participants were asked to classify rectangles with different height-to-width ratios into horizontal and vertical rectangles using their right and left index fingers while their PMC was stimulated either bilaterally or unilaterally. Two experiments were conducted with different stimulation conditions: the first experiment (n = 12) had only one stimulation condition (bilateral stimulation), and the second experiment (n = 45) had three stimulation conditions (bilateral, anodal unilateral, and cathodal unilateral stimulations). The second experiment was designed to confirm the results of the first experiment and to further investigate the effects of anodal and cathodal stimulations alone in the observed effects. Each participant took part in two sessions. The laterality of stimulation was reversed over the two sessions. Our results showed that anodal stimulation of the PMC biases participants' responses toward using the contralateral hand whereas cathodal stimulation biases responses toward the ipsilateral hand. Brain stimulation also modulated the RT of the left hand in all stimulation conditions: Responses were faster when the response bias was in favor of the left hand and slower when the response bias was against it. We propose two possible explanations for these findings: the perceptual bias account (bottom–up effects of stimulation on perception) and the motor-choice bias account (top–down modulation of the decision-making system by facilitation of response in one hand over the other). We conclude that motor responses and the choice of hand can be modulated using tDCS.



2017 ◽  
Author(s):  
Paul G. Middlebrooks ◽  
Bram B. Zandbelt ◽  
Gordon D. Logan ◽  
Thomas J. Palmeri ◽  
Jeffrey D. Schall

Perceptual decision-making, studied using two-alternative forced-choice tasks, is explained by sequential sampling models of evidence accumulation, which correspond to the dynamics of neurons in sensorimotor structures of the brain1 2. Response inhibition, studied using stop-signal (countermanding) tasks, is explained by a race model of the initiation or canceling of a response, which correspond to the dynamics of neurons in sensorimotor structures3 4. Neither standard model accounts for performance of the other task. Sequential sampling models incorporate response initiation as an uninterrupted non-decision time parameter independent of task-related variables. The countermanding race model does not account for the choice process. Here we show with new behavioral, neural and computational results that perceptual decision making of varying difficulty can be countermanded with invariant efficiency, that single prefrontal neurons instantiate both evidence accumulation and response inhibition, and that an interactive race between two GO and one STOP stochastic accumulator fits countermanding choice behavior. Thus, perceptual decision-making and response control, previously regarded as distinct mechanisms, are actually aspects of more flexible behavior supported by a common neural and computational mechanism. The identification of this aspect of decision-making with response production clarifies the component processes of decision-making.



Sign in / Sign up

Export Citation Format

Share Document