scholarly journals Catecholamine Modulation of Evidence Accumulation during Perceptual Decision Formation: A Randomized Trial

2019 ◽  
Vol 31 (7) ◽  
pp. 1044-1053 ◽  
Author(s):  
Gerard M. Loughnane ◽  
Méadhbh B. Brosnan ◽  
Jessica J. M. Barnes ◽  
Angela Dean ◽  
Sanjay L. Nandam ◽  
...  

Recent behavioral modeling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomized, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision-making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate and atomoxetine, and their effects were compared with those of citalopram and placebo. Participants performed a classic EEG oddball paradigm that elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that methylphenidate and atomoxetine administration shortened RTs to the oddball targets. The neural basis of this behavioral effect was an earlier P3b peak latency, driven specifically by an increase in its buildup rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision-making, that is, evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain.

2018 ◽  
Author(s):  
Gerard M. Loughnane ◽  
Méadhbh B. Brosnan ◽  
Jessica J.M. Barnes ◽  
Angela Dean ◽  
L. Sanjay Nandam ◽  
...  

AbstractRecent behavioural modelling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomised, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate (MPH) and atomoxetine (ATM) and their effects were compared to those of citalopram (CIT), and placebo (PLA). Participants performed a classic EEG oddball paradigm which elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that MPH and ATM administration shortened RTs to the oddball targets. The neural basis of this behavioural effect was an earlier P3b peak latency, driven specifically by an increase in its build-up rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision making, i.e. evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain.


Cortex ◽  
2021 ◽  
Author(s):  
Nicole R. Stefanac ◽  
Shou-Han Zhou ◽  
Megan M. Spencer-Smith ◽  
Redmond O’Connell ◽  
Mark A. Bellgrove

2021 ◽  
Vol 32 (9) ◽  
pp. 1494-1509
Author(s):  
Yuan Chang Leong ◽  
Roma Dziembaj ◽  
Mark D’Esposito

People’s perceptual reports are biased toward percepts they are motivated to see. The arousal system coordinates the body’s response to motivationally significant events and is well positioned to regulate motivational effects on perceptual judgments. However, it remains unclear whether arousal would enhance or reduce motivational biases. Here, we measured pupil dilation as a measure of arousal while participants ( N = 38) performed a visual categorization task. We used monetary bonuses to motivate participants to perceive one category over another. Even though the reward-maximizing strategy was to perform the task accurately, participants were more likely to report seeing the desirable category. Furthermore, higher arousal levels were associated with making motivationally biased responses. Analyses using computational models suggested that arousal enhanced motivational effects by biasing evidence accumulation in favor of desirable percepts. These results suggest that heightened arousal biases people toward what they want to see and away from an objective representation of the environment.


2015 ◽  
Vol 48 (1) ◽  
pp. 184-200 ◽  
Author(s):  
Leendert van Maanen ◽  
Birte U. Forstmann ◽  
Max C. Keuken ◽  
Eric-Jan Wagenmakers ◽  
Andrew Heathcote

2021 ◽  
Author(s):  
Kyra Schapiro ◽  
Kresimir Josic ◽  
Zachary Kilpatrick ◽  
Joshua I Gold

Deliberative decisions based on an accumulation of evidence over time depend on working memory, and working memory has limitations, but how these limitations affect deliberative decision-making is not understood. We used human psychophysics to assess the impact of working-memory limitations on the fidelity of a continuous decision variable. Participants decided the average location of multiple visual targets. This computed, continuous decision variable degraded with time and capacity in a manner that depended critically on the strategy used to form the decision variable. This dependence reflected whether the decision variable was computed either: 1) immediately upon observing the evidence, and thus stored as a single value in memory; or 2) at the time of the report, and thus stored as multiple values in memory. These results provide important constraints on how the brain computes and maintains temporally dynamic decision variables.


2017 ◽  
Author(s):  
Onno van der Groen ◽  
Matthew F. Tang ◽  
Nicole Wenderoth ◽  
Jason B. Mattingley

Summary:Perceptual decision-making relies on the gradual accumulation of noisy sensory evidence until a specified boundary is reached and an appropriate response is made. It might be assumed that adding noise to a stimulus, or to the neural systems involved in its processing, would interfere with the decision process. But it has been suggested that adding an optimal amount of noise can, under appropriate conditions, enhance the quality of subthreshold signals in nonlinear systems, a phenomenon known as stochastic resonance. Here we asked whether perceptual decisions obey these stochastic resonance principles by adding noise directly to the visual cortex using transcranial random noise stimulation (tRNS) while participants judged the direction of motion in foveally presented random-dot motion arrays. Consistent with the stochastic resonance account, we found that adding tRNS bilaterally to visual cortex enhanced decision-making when stimuli were just below, but not well below or above, perceptual threshold. We modelled the data under a drift diffusion framework to isolate the specific components of the multi-stage decision process that were influenced by the addition of neural noise. This modelling showed that tRNS increased drift rate, which indexes the rate of evidence accumulation, but had no effect on bound separation or non-decision time. These results were specific to bilateral stimulation of visual cortex; control experiments involving unilateral stimulation of left and right visual areas showed no influence of random noise stimulation. Our study is the first to provide causal evidence that perceptual decision-making is susceptible to a stochastic resonance effect induced by tRNS, and that this effect arises from selective enhancement of the rate of evidence accumulation for sub-threshold sensory events.


2021 ◽  
Vol 15 ◽  
Author(s):  
Clara Saleri Lunazzi ◽  
Amélie J. Reynaud ◽  
David Thura

Recent theories and data suggest that adapted behavior involves economic computations during which multiple trade-offs between reward value, accuracy requirement, energy expenditure, and elapsing time are solved so as to obtain rewards as soon as possible while spending the least possible amount of energy. However, the relative impact of movement energy and duration costs on perceptual decision-making and movement initiation is poorly understood. Here, we tested 31 healthy subjects on a perceptual decision-making task in which they executed reaching movements to report probabilistic choices. In distinct blocks of trials, the reaching duration (“Time” condition) and energy (“Effort” condition) costs were independently varied compared to a “Reference” block, while decision difficulty was maintained similar at the block level. Participants also performed a simple delayed-reaching (DR) task aimed at estimating movement initiation duration in each motor condition. Results in that DR task show that long duration movements extended reaction times (RTs) in most subjects, whereas energy-consuming movements led to mixed effects on RTs. In the decision task, about half of the subjects decreased their decision durations (DDs) in the Time condition, while the impact of energy on DDs were again mixed across subjects. Decision accuracy was overall similar across motor conditions. These results indicate that movement duration and, to a lesser extent, energy expenditure, idiosyncratically affect perceptual decision-making and action initiation. We propose that subjects who shortened their choices in the time-consuming condition of the decision task did so to limit a drop of reward rate.


Author(s):  
Loughnane Gerard ◽  
Newman Daniel ◽  
Bellgrove Mark ◽  
Lalor Edmund ◽  
Kelly Simon ◽  
...  

Author(s):  
Elaheh Imani ◽  
Ahad Harati ◽  
Hamidreza Pourreza ◽  
Morteza Moazami Goudarzi

AbstractPerceptual decision making, as a process of detecting and categorizing information, has been studied extensively over the last two decades. In this study, we investigated the neural characterization of the whole decision-making process by discovering the information processing stages. Such that, the timing and the neural signature of the processing stages were identified for individual trials. The association of stages duration with the stimulus coherency and spatial prioritization factors also revealed the importance of the evidence accumulation process on the speed of the whole decision-making process. We reported that the impact of the stimulus coherency and spatial prioritization on the neural representation of the decision-making process was consistent with the behavioral characterization as well. This study demonstrated that uncovering the cognitive processing stages provided more insights into the decision-making process.


Sign in / Sign up

Export Citation Format

Share Document