scholarly journals Cholecystokinin release triggered by presynaptic NMDA receptors produces LTP and sound-sound associative memory formation

2017 ◽  
Author(s):  
Xiao Li ◽  
Xi Chen ◽  
Yin Ting Wong ◽  
Haitao Wang ◽  
Hemin Feng ◽  
...  

AbstractMemory is stored in neural networks via changes in synaptic strength mediated in part by NMDA-dependent long-term potentiation (LTP). There is evidence that entorhinal cortex enables neocortical neuroplasticity through cholecystokinin (CCK)-containing neocortical projections. Here we show that a CCKB antagonist blocks high-frequency stimulation (HFS)-induced LTP in the auditory cortex, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; administration of CCK rescued associative learning. HFS of CCK-containing entorhino-neocortical projection neurons in anesthetized mice enabled cue-cue associative learning. Furthermore, when one cue was pre-conditioned to footshock, the mouse showed a freezing response to the other cue, indicating that the mice had formed an association. HFS-induced neocortical LTP was completely blocked by either NMDA antagonist or CCK-BR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation (LFS). Moreover, in the presence of CCK LTP was still induced, even after blockade of NMDA receptors. Local application of NMDA induced CCK release in the neocortex. To identify how NMDA receptor switches LTP, a stimulation protocol of 25 pulse-pairs was adopted to replace HFS; NMDA-dependent LTP was induced with the inter-pulse intervals between 10 and 100 ms, but not with those of 5 and 200 ms. LTP-mediated plasticity was linked to localization of the NMDA receptor subunit NR2a on cortical CCK terminals originating in the entorhinal cortex. These novel findings suggest that presynaptic NMDA receptors on CCK terminals control the release of CCK, which enables neocortical LTP and formation of cue-cue associative memory.One Sentence SummaryPresynaptic NMDA receptors switches the release of CCK from entorhinal neurons, which enables neocortical LTP and formation of sound-sound associative memory.

2019 ◽  
Vol 116 (13) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xi Chen ◽  
Xiao Li ◽  
Yin Ting Wong ◽  
Xuejiao Zheng ◽  
Haitao Wang ◽  
...  

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK−/−mice lacked neocortical LTP and showed deficits in a cue–cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue–cue associative memory.


2012 ◽  
Vol 116 (3) ◽  
pp. 673-682 ◽  
Author(s):  
Stephan Kratzer ◽  
Corinna Mattusch ◽  
Eberhard Kochs ◽  
Matthias Eder ◽  
Rainer Haseneder ◽  
...  

Background The memory-blocking properties of general anesthetics are of high clinical relevance and scientific interest. The inhalational anesthetic xenon antagonizes N-methyl-D-aspartate (NMDA) receptors. It is unknown if xenon affects long-term potentiation (LTP), a cellular correlate for memory formation. In hippocampal brain slices, the authors investigated in area CA1 whether xenon affects LTP, NMDA receptor-mediated neurotransmission, and intracellular calcium concentrations. Methods In sagittal murine hippocampal brain slices, the authors investigated the effects of xenon on LTP by recording excitatory postsynaptic field potentials. Using fluorometric calcium imaging, the authors tested the influence of xenon on calcium influx during high-frequency stimulation. In addition, using the patch-clamp technique, the xenon effect on synaptic and extrasynaptic NMDA receptors and L-type calcium channels was examined. Results In the absence of xenon, high-frequency stimulation reliably induced LTP and potentiated field potential slopes to (mean ± SEM) 127.2 ± 5.8% (P < 0.001). In the presence of xenon, high-frequency stimulation induced only a short-term potentiation, and field potentials returned to baseline level after 15-20 min (105.9 ± 2.9%; P = 0.090). NMDA receptor-mediated excitatory postsynaptic currents were reduced reversibly by xenon to 65.9 ± 9.4% (P = 0.007) of control. When extrasynaptic receptors were activated, xenon decreased NMDA currents to 58.2 ± 5.8% (P < 0.001). Xenon reduced the increase in intracellular calcium during high-frequency stimulation without affecting L-type calcium channels. Conclusions N-methyl-D-aspartate receptor activation is crucial for the induction of CA1 LTP. Thus, the depression of NMDA receptor-mediated neurotransmission presumably contributes to the blockade of LTP under xenon. Because LTP is assumed to be involved in learning and memory, its blockade might be a key mechanism for xenon's amnestic properties.


2004 ◽  
Vol 92 (6) ◽  
pp. 3575-3581 ◽  
Author(s):  
Fernanda Laezza ◽  
Raymond Dingledine

High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum interneurons expressing GluR2-lacking, Ca2+-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-d-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. At synapses expressing GluR2-deficient AMPA receptors, tetanic stimulation that activates NMDA receptors triggered long-term potentiation or depression (LTP or LTD) depending on membrane potential. LTP was elicited at most synapses when the interneuron was held at –30 mV during the stimulus train but was typically prevented by postsynaptic hyperpolarization to –70 mV, by strong depolarization to 0 mV, by d-2-amino-5-phosphonovaleric acid, or by postsynaptic injection of the Ca2+ chelator bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid. At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.


2002 ◽  
Vol 9 (4) ◽  
pp. 249-254 ◽  
Author(s):  
Ken Shimono ◽  
Michel Baudry ◽  
Lam Ho ◽  
Makoto Taketani ◽  
Gary Lynch

Long-term potentiation (LTP) was elicited by high frequency stimulation in hippocampal slices cultured on multi-electrode arrays. LTP lasting more than 1 h was recorded in 75% of slices, and a significant number of slices exhibited a non-decaying LTP that lasted more than 48 h. LTP induction was completely and reversibly blocked by an antagonist of the NMDA receptor, APV. Our results suggest the possibility of using chronic recording in hippocampal slices cultured on multi-electrode arrays to study the mechanisms underlying LTP maintenance and stabilization.


1995 ◽  
Vol 73 (6) ◽  
pp. 2612-2617 ◽  
Author(s):  
H. Gozlan ◽  
R. Khazipov ◽  
D. Diabira ◽  
Y. Ben-Ari

1. Using extracellular recording techniques in the CA1 region of the rat hippocampus, we have evaluated the effects of the redox reagents 5,5O-dithiobis-2-nitrobenzoic acid (DTNB) and tris (carboxyethyl) phosphine (TCEP) on long-term potentiation (LTP) expressed by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. In physiological conditions a high-frequency stimulation (HFS) of Schaffer collateral-commissural fibers induced a LTP expressed by a persistent increase (73 +/- 13%, mean +/- SE, n = 8/10) of AMPA field potentials (LTPA). In the presence of 10 microM of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced concentration of Mg2+ (0.1 mM) to boost NMDA receptors, the HFS induced LTP of NMDA field potentials (LTPN; 62 +/- 11%, n = 8/10). 2. The thiol-oxidizing reagent DTNB (200 microM) reduced, by 46 +/- 5% (n = 24), NMDA-receptor field potentials (NMDA-FP), and this effect could not be reversed by extensive washing. The disulfide-reducing agent TCEP (200 microM) slightly increased AMPA-FP and reversed the DTNB-induced inhibition of NMDA-FP. 3. DTNB (200 microM, 10 min), and TCEP (200 microM, 20 min), had no effect on AMPA-FP (98 +/- 3% and 101 +/- 5%, respectively, n = 12). 4. DTNB (200 microM, 15 min) did not prevent the induction or expression of LTPA (-12 and -5%, respectively, n = 8/8). Similar results were observed with TCEP (200 microM, 20 min).(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 97 (1) ◽  
pp. 727-737 ◽  
Author(s):  
Pan-Yue Deng ◽  
Saobo Lei

The entorhinal cortex (EC) serves as a gateway to the hippocampus and plays a pivotal role in memory processing in the brain. Superficial layers of the EC convey the cortical input projections to the hippocampus, whereas deep layers of the EC relay hippocampal output projections back to the superficial layers of the EC or to other cortical regions. Whereas the EC expresses long-term potentiation (LTP) and depression (LTD), the underlying cellular and molecular mechanisms have not been determined. Because the axons of the stellate neurons in layer II of the EC form the perforant path that innervates the dentate gyrus granule cells of the hippocampus, we studied the mechanisms underlying the long-term plasticity in identified stellate neurons. Application of high-frequency stimulation (100 Hz for 1 s, repeated 3 times at an interval of 10 s) or forskolin (50 μM) failed to induce significant changes in synaptic strength, whereas application of pairing (presynaptic stimulation at 0.33 Hz paired with postsynaptic depolarization from −60 to −10 mV for 5 min) or low-frequency stimulation (LFS, 1 Hz for 15 min) paradigm-induced LTD. Pairing- or LFS-induced LTDs were N-methyl-d-aspartate receptor-dependent and occluded each other suggesting that they have the similar cellular mechanism. Pairing-induced LTD required the activity of calcineurin and involved AMPA receptor endocytosis that required the function of ubiquitin–proteasome system. Our study provides a cellular mechanism that might in part explain the role of the EC in memory.


1996 ◽  
Vol 76 (5) ◽  
pp. 3126-3135 ◽  
Author(s):  
N. A. Breakwell ◽  
M. J. Rowan ◽  
R. Anwyl

1. We reexamined the important areas of conflict in (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD]-induced potentiation of the field excitatory postsynaptic potential (EPSP) and, for the first time, investigated the role of mGluRs in EPSP-spike (E-S) coupling. 2. (1S,3R)-ACPD (10 microM) bath applied for 20 min consistently induced a long-lasting potentiation of the dendritic EPSP in area CA1 of submerged rat hippocampal slices, which was considerably faster in onset than described previously. 3. This effect was not associated with any change in presynaptic fiber volley but was dependent on both an intact CA3 connection, because removal of area CA3 blocked (1S,3R)-ACPD-induced potentiation, and also on functional N-methyl-D-aspartate (NMDA) receptors, because (1S,3R)-ACPD-induced potentiation was blocked by inclusion of the NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5; 50 microM). 4. (1S,3R)-ACPD induced a long-lasting potentiation of the population spike (PS) amplitude that was consistently larger than that of the EPSP measured in the cell body area. This EPSP-PS (E-S) potentiation was blocked by inclusion of the gamma-aminobuturic acid-A (GABAA) receptor antagonist, picrotoxin (50 microM). 5. E-S potentiation induced by high-frequency stimulation (HFS), which was of the same magnitude as that induced by (1S,3R)-ACPD, was blocked by the mGluR-selective antagonist (+)-alpha-methyl-4-carboxyphenylglycine (+MCPG; 250 microM). +MCPG also blocked HFS-induced long-term potentiation (LTP) of the EPSP measured in the cell body. 6. These results suggest that (1S,3R)-ACPD-induced potentiation is NMDA receptor dependent, contrary to some previous findings, and provide further evidence that both synaptic and E-S potentiation induced by (1S,3R)-ACPD share common mechanisms of expression with HFS-induced LTP. The data emphasize the important role of mGluRs in induction of EPSP LTP and E-S potentiation.


1990 ◽  
Vol 63 (5) ◽  
pp. 1148-1168 ◽  
Author(s):  
W. R. Holmes ◽  
W. B. Levy

1. Because induction of associative long-term potentiation (LTP) in the dentate gyrus is thought to depend on Ca2+ influx through channels controlled by N-methyl-D-aspartate (NMDA) receptors, quantitative modeling was performed of synaptically mediated Ca2+ influx as a function of synaptic coactivation. The goal was to determine whether Ca2+ influx through NMDA-receptor channels was, by itself, sufficient to explain associative LTP, including control experiments and the temporal requirements of LTP. 2. Ca2+ influx through NMDA-receptor channels was modeled at a synapse on a dendritic spine of a reconstructed hippocampal dentate granule cell when 1-115 synapses on spines at different dendritic locations were activated eight times at frequencies of 10-800 Hz. The resulting change in [Ca2+] in the spine head was estimated from the Ca2+ influx with the use of a model of a dendritic spine that included Ca2+ buffers, pumps, and diffusion. 3. To use a compelling model of synaptic activation, we developed quantitative descriptions of the NMDA and non-NMDA receptor-mediated conductances consistent with available experimental data. The experimental data reported for NMDA and non-NMDA receptor-channel properties and data from other non-LTP experiments that separated the NMDA and non-NMDA receptor-mediated components of synaptic events proved to be limiting for particular synaptic variables. Relative to the non-NMDA glutamate-type receptors, 1) the unbinding of transmitter from NMDA receptors had to be slow, 2) the transition from the bound NMDA receptor-transmitter complex to the open channel state had to be even slower, and 3) the average number of NMDA-receptor channels at a single activated synapse on a single spine head that were open and conducting at a given moment in time had to be very small (usually less than 1). 4. With the use of these quantitative synaptic conductance descriptions. Ca2+ influx through NMDA-receptor channels at a synapse was computed for a variety of conditions. For a constant number of pulses, Ca2+ influx was calculated as a function of input frequency and the number of coactivated synapses. When few synapses were coactivated, Ca2+ influx was small, even for high-frequency activation. However, with larger numbers of coactivated synapses, there was a steep increase in Ca2+ influx with increasing input frequency because of the voltage-dependent nature of the NMDA receptor-mediated conductance. Nevertheless, total Ca2+ influx was never increased more than fourfold by increasing input frequency or the number of coactivated synapses.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 83 (5) ◽  
pp. 2542-2553 ◽  
Author(s):  
Samuel B. Kombian ◽  
Michiru Hirasawa ◽  
Didier Mouginot ◽  
Xihua Chen ◽  
Quentin J. Pittman

Magnocellular neurons (MCNs) of the hypothalamic supraoptic nucleus (SON) secrete vasopressin and oxytocin. With the use of whole-cell and nystatin-perforated patch recordings of MCNs in current- and voltage-clamp modes, we show that high-frequency stimulation (HFS, 10–200 Hz) of excitatory afferents induces increases in the frequency and amplitude of 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX)-sensitive miniature excitatory postsynaptic currents (mEPSCs) lasting up to 20 min. This synaptic enhancement, referred to as short-term potentiation (STP), could be induced repeatedly; required tetrodotoxin (TTX)-dependent action potentials to initiate, but not to maintain; and was independent of postsynaptic membrane potential, N-methyl-d-aspartate (NMDA) receptors, or retrograde neurohypophyseal neuropeptide release. STP was not accompanied by changes in the conductance of the MCNs or in the responsiveness of the postsynaptic non-NMDA receptors, as revealed by brief application of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate. mEPSCs showed similar rise times before and after HFS and analysis of amplitude distributions of mEPSCs revealed one or more peaks pre-HFS and the appearance of additional peaks post-HFS, which were equidistant from the first peak. STP of mEPSCs was not associated with enhanced evoked responses, but was associated with an NBQX-sensitive increase in spontaneous activity of MCNs. Thus we have identified a particularly long-lasting potentiation of excitatory synapses in the SON, which has a presynaptic locus, is dissociated from changes in evoked release, and which regulates postsynaptic cell excitability.


Sign in / Sign up

Export Citation Format

Share Document