scholarly journals Complexity of frequency receptive fields predicts tonotopic variability across species

2019 ◽  
Author(s):  
Quentin Gaucher ◽  
Mariangela Panniello ◽  
Aleksandar Z Ivanov ◽  
Johannes C Dahmen ◽  
Andrew J King ◽  
...  

AbstractPrimary cortical areas contain maps of sensory features, including sound frequency in primary auditory cortex (A1). Two-photon calcium imaging in mice has confirmed the presence of these large-scale maps, while uncovering an unexpected local variability in the stimulus preferences of individual neurons in A1 and other primary regions. Here we show that fractured tonotopy is not unique to rodents. Using two-photon imaging, we found that local variance in frequency preferences is equivalent in ferrets and mice. Much of this heterogeneity was due to neurons with complex frequency tuning, which are less spatially organized than those tuned to a single frequency. Finally, we show that microelectrode recordings may describe a smoother tonotopic arrangement due to a bias towards neurons with simple frequency tuning. These results show that local variability in the tonotopic map is not restricted to rodents and help explain inconsistencies in cortical topography across species and recording techniques.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Quentin Gaucher ◽  
Mariangela Panniello ◽  
Aleksandar Z Ivanov ◽  
Johannes C Dahmen ◽  
Andrew J King ◽  
...  

Primary cortical areas contain maps of sensory features, including sound frequency in primary auditory cortex (A1). Two-photon calcium imaging in mice has confirmed the presence of these global tonotopic maps, while uncovering an unexpected local variability in the stimulus preferences of individual neurons in A1 and other primary regions. Here we show that local heterogeneity of frequency preferences is not unique to rodents. Using two-photon calcium imaging in layers 2/3, we found that local variance in frequency preferences is equivalent in ferrets and mice. Neurons with multipeaked frequency tuning are less spatially organized than those tuned to a single frequency in both species. Furthermore, we show that microelectrode recordings may describe a smoother tonotopic arrangement due to a sampling bias towards neurons with simple frequency tuning. These results help explain previous inconsistencies in cortical topography across species and recording techniques.


2018 ◽  
Author(s):  
Huan-huan Zeng ◽  
Jun-feng Huang ◽  
Ming Chen ◽  
Yun-qing Wen ◽  
Zhi-ming Shen ◽  
...  

AbstractMarmoset has emerged as a useful non-human primate species for studying the brain structure and function. Previous studies on the mouse primary auditory cortex (A1) showed that neurons with preferential frequency tuning responses are mixed within local cortical regions, despite a large-scale tonotopic organization. Here we found that frequency tuning properties of marmoset A1 neurons are highly uniform within local cortical regions. We first defined tonotopic map of A1 using intrinsic optical imaging, and then used in vivo two-photon calcium imaging of large neuronal populations to examine the tonotopic preference at the single-cell level. We found that tuning preferences of layer 2/3 neurons were highly homogeneous over hundreds of micrometers in both horizontal and vertical directions. Thus, marmoset A1 neurons are distributed in a tonotopic manner at both macro- and microscopic levels. Such organization is likely to be important for the organization of auditory circuits in the primate brain.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xiao-lin Chou ◽  
Qi Fang ◽  
Linqing Yan ◽  
Wen Zhong ◽  
Bo Peng ◽  
...  

Lateral posterior nucleus (LP) of thalamus, the rodent homologue of primate pulvinar, projects extensively to sensory cortices. However, its functional role in sensory cortical processing remains largely unclear. Here, bidirectional activity modulations of LP or its projection to the primary auditory cortex (A1) in awake mice reveal that LP improves auditory processing in A1 supragranular-layer neurons by sharpening their receptive fields and frequency tuning, as well as increasing the signal-to-noise ratio (SNR). This is achieved through a subtractive-suppression mechanism, mediated largely by LP-to-A1 axons preferentially innervating specific inhibitory neurons in layer 1 and superficial layers. LP is strongly activated by specific sensory signals relayed from the superior colliculus (SC), contributing to the maintenance and enhancement of A1 processing in the presence of auditory background noise and threatening visual looming stimuli respectively. Thus, a multisensory bottom-up SC-pulvinar-A1 pathway plays a role in contextual and cross-modality modulation of auditory cortical processing.


2006 ◽  
Vol 96 (6) ◽  
pp. 2972-2983 ◽  
Author(s):  
Gabriel Soto ◽  
Nancy Kopell ◽  
Kamal Sen

Two fundamental issues in auditory cortical processing are the relative importance of thalamocortical versus intracortical circuits in shaping response properties in primary auditory cortex (ACx), and how the effects of neuromodulators on these circuits affect dynamic changes in network and receptive field properties that enhance signal processing and adaptive behavior. To investigate these issues, we developed a computational model of layers III and IV (LIII/IV) of AI, constrained by anatomical and physiological data. We focus on how the local and global cortical architecture shape receptive fields (RFs) of cortical cells and on how different well-established cholinergic effects on the cortical network reshape frequency-tuning properties of cells in ACx. We identify key thalamocortical and intracortical circuits that strongly affect tuning curves of model cortical neurons and are also sensitive to cholinergic modulation. We then study how differential cholinergic modulation of network parameters change the tuning properties of our model cells and propose two different mechanisms: one intracortical (involving muscarinic receptors) and one thalamocortical (involving nicotinic receptors), which may be involved in rapid plasticity in ACx, as recently reported in a study by Fritz and coworkers.


2019 ◽  
Vol 116 (8) ◽  
pp. 3239-3244 ◽  
Author(s):  
Huan-huan Zeng ◽  
Jun-feng Huang ◽  
Ming Chen ◽  
Yun-qing Wen ◽  
Zhi-ming Shen ◽  
...  

Marmoset has emerged as a useful nonhuman primate species for studying brain structure and function. Previous studies on the mouse primary auditory cortex (A1) showed that neurons with preferential frequency-tuning responses are mixed within local cortical regions, despite a large-scale tonotopic organization. Here we found that frequency-tuning properties of marmoset A1 neurons are highly uniform within local cortical regions. We first defined the tonotopic map of A1 using intrinsic optical imaging and then used in vivo two-photon calcium imaging of large neuronal populations to examine the tonotopic preference at the single-cell level. We found that tuning preferences of layer 2/3 neurons were highly homogeneous over hundreds of micrometers in both horizontal and vertical directions. Thus, marmoset A1 neurons are distributed in a tonotopic manner at both macro- and microscopic levels. Such organization is likely to be important for the organization of auditory circuits in the primate brain.


2001 ◽  
Vol 86 (1) ◽  
pp. 475-491 ◽  
Author(s):  
William C. Loftus ◽  
Mitchell L. Sutter

The excitatory and inhibitory frequency/intensity response areas (FRAs) and spectrotemporal receptive fields (STRFs) of posterior auditory cortical field (PAF) single neurons were investigated in barbiturate anesthetized cats. PAF neurons' pure-tone excitatory FRAs (eFRAs) exhibited a diversity of shapes, including some with very broad frequency tuning and some with multiple distinct excitatory frequency ranges (i.e., multipeaked eFRAs). Excitatory FRAs were analyzed after selectively excluding spikes on the basis of spike response times relative to stimulus onset. This analysis indicated that spikes with shorter response times were confined to narrow regions of the eFRAs, while spikes with longer response times were more broadly distributed over the eFRA. First-spike latencies in higher threshold response peaks of multipeaked eFRAs were ∼10 ms longer, on average, than latencies in lower threshold response peaks. STRFs were constructed to examine the dynamic frequency tuning of neurons. More than half of the neurons (51%) had STRFs with “sloped” response maxima, indicating that the excitatory frequency range shifted with time. A population analysis demonstrated that the median first-spike latency varied systematically as a function of frequency with a median slope of ∼12 ms per octave. Inhibitory frequency response areas were determined by simultaneous two-tone stimulation. As in primary auditory cortex (A1), a diversity of inhibitory band structures was observed. The largest class of neurons (25%) had an inhibitory band flanking each eFRA edge, i.e., one lower and one upper inhibitory band in a “center-surround” organization. However, in comparison to a previous report of inhibitory structure in A1 neurons, PAF exhibited a higher incidence of neurons with more complex inhibitory band structure (for example, >2 inhibitory bands). As was the case with eFRAs, spikes with longer response times contributed to the complexity of inhibitory FRAs. These data indicate that PAF neurons integrate temporally varying excitatory and inhibitory inputs from a broad spectral extent and, compared with A1, may be suited to analyzing acoustic signals of greater spectrotemporal complexity than was previously thought.


2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.


Sign in / Sign up

Export Citation Format

Share Document