spike response
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Artem Pinchuk

Abstract Magnocellular-projecting retinal ganglion cells show spike response in two cases. Firstly, as a result of presentation of the optimal stimulus. Secondly, rebound excitation when removing the opposite stimulus. Also, there are studies suggesting that rebound excitation meets conditions to participate in visual perception at the same sensitivity and reaction speed as a response to the optimal stimulus. Thus, white noise stimulation creates possibility to catch the form of a smooth transition from one type of response to another. Using freely available data, a spike-triggered behavior map was built that does not show the area of silence between those two types of spike triggers. Moreover, linear filter with biphasic temporal properties which work as the derivative kernel demonstrate that both responses are two sides of the same coin. Thus, it is suggested to determine the optimal stimulus for magnocellular-projecting retinal ganglion cells as brightness change according to concentric center–surround receptive field structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xianghong Lin ◽  
Mengwei Zhang ◽  
Xiangwen Wang

As a new brain-inspired computational model of artificial neural networks, spiking neural networks transmit and process information via precisely timed spike trains. Constructing efficient learning methods is a significant research field in spiking neural networks. In this paper, we present a supervised learning algorithm for multilayer feedforward spiking neural networks; all neurons can fire multiple spikes in all layers. The feedforward network consists of spiking neurons governed by biologically plausible long-term memory spike response model, in which the effect of earlier spikes on the refractoriness is not neglected to incorporate adaptation effects. The gradient descent method is employed to derive synaptic weight updating rule for learning spike trains. The proposed algorithm is tested and verified on spatiotemporal pattern learning problems, including a set of spike train learning tasks and nonlinear pattern classification problems on four UCI datasets. Simulation results indicate that the proposed algorithm can improve learning accuracy in comparison with other supervised learning algorithms.


Author(s):  
Abida Sultana ◽  
Ahmed Alanazi ◽  
Jintana Meesungnoen ◽  
Jean-Paul Jay-Gerin

Monte Carlo multi-track chemistry simulations were carried out to study the effects of high dose rates on the transient yields of hydronium ions (H<sub>3</sub>O<sup>+</sup>) formed during low linear energy transfer (LET) radiolysis of both pure, deaerated and aerated liquid water at 25 °C, in the interval ~1 ps–10 μs. Our simulation model consisted of randomly irradiating water with <i>N</i> interactive tracks of 300-MeV incident protons (LET ~ 0.3 keV/μm), which simultaneously impact perpendicularly on the water within a circular surface. The effect of the dose rate was studied by varying <i>N</i>. Our calculations showed that the radiolytic formation of H<sub>3</sub>O<sup>+</sup> causes the entire irradiated volume to temporarily become very acidic. The magnitude and duration of this abrupt “acid-spike” response depend on the value of <i>N</i>. It is most intense at times less than ~10–100 ns, equal to ~3.4 and 2.8 for <i>N</i> = 500 and 2000 (<i>i.e.</i>, for dose rates of ~1.9 × 10<sup>9</sup> and 8.7 × 10<sup>9</sup> Gy/s, respectively). At longer times, the pH gradually increases for all <i>N</i> values and eventually returns to the neutral value of seven, which corresponds to the non-radiolytic, pre-irradiation concentration of H<sub>3</sub>O<sup>+</sup>. It is worth noting that these early acidic pH responses are very little dependent on the presence or absence of oxygen. Finally, given the importance of pH for many cellular functions, this study suggests that these acidic pH spikes may contribute to the normal tissue-sparing effect of FLASH radiotherapy.


2021 ◽  
Author(s):  
Ehsan Sedaghat-Nejad ◽  
Jay S. Pi ◽  
Paul Hage ◽  
Mohammad Amin Fakharian ◽  
Reza Shadmehr

AbstractThe information that the brain transmits from one region to another is often viewed through the lens of firing rates. However, if the output neurons could vary the timing of their spikes with respect to each other, then through synchronization they could highlight information that may be critical for control of behavior. In the cerebellum, the computations that are performed by the cerebellar cortex are conveyed to the nuclei via inhibition. Yet, synchronous activity entrains nucleus neurons, making them fire. Does the cerebellar cortex rely on spike synchrony within populations of Purkinje cells (P-cells) to convey information to the nucleus? We recorded from multiple P-cells while marmosets performed saccadic eye movements and organized them into populations that shared a complex spike response to error. Before movement onset, P-cells transmitted information via a rate code: the simple spike firing rates predicted the direction and velocity of the impending saccade. However, during the saccade, the spikes became temporally aligned within the population, signaling when to stop the movement. Thus, the cerebellar cortex relies on spike synchronization within a population of P-cells, not individual firing rates, to convey to the nucleus when to stop a movement.


2021 ◽  
Vol 11 (4) ◽  
pp. 298-303
Author(s):  
Nor Surayahani Suriani ◽  
◽  
Fadilla ‘Atyka Nor Rashid

Recognizing human actions is a challenging task and actively research in computer vision community. The task of human activity recognition has been widely used in various application such as human monitoring in a hospital or public spaces. This work applied open dataset of smartphones accelerometer data for various type of activities. The analogue input data is encoded into the spike trains using some form of a rate-based method. Spiking neural network is a simplified form of dynamic artificial network. Therefore, this network is expected to model and generate action potential from the leaky integrate-and-fire spike response model. The leaning rule is adaptive and efficient to present synapse exciting and inhibiting firing neuron. The result found that the proposed model presents the state-of-the-art performance at a low computational cost.


2021 ◽  
Author(s):  
Dora Angelaki ◽  
Jean Laurens

Olivo-cerebellar loops, where anatomical patches of the cerebellar cortex and inferior olive project one onto the other, form an anatomical unit of cerebellar computation. Here, we investigated how successive computational steps map onto olivo-cerebellar loops. Lobules IX-X of the cerebellar vermis, i.e. the nodulus and uvula, implement an internal model of the inner ear's graviceptor, the otolith organs. We have previously identified two populations of Purkinje cells that participate in this computation: Tilt-selective cells transform egocentric rotation signals into allocentric tilt velocity signals, to track head motion relative to gravity, and translation-selective cells encode otolith prediction error. Here we show that, despite very distinct simple spike response properties, both types of Purkinje cells emit complex spikes that are proportional to sensory prediction error. This indicates that both cell populations comprise a single olivo-cerebellar loop, in which only translation-selective cells project to the inferior olive. We propose a neural network model where sensory prediction errors computed by translation-selective cells are used as a teaching signal for both populations, and demonstrate that this network can learn to implement an internal model of the otoliths.


2021 ◽  
Author(s):  
Anna L McNaughton ◽  
Robert S Paton ◽  
Matthew Edmans ◽  
Jonathan Youngs ◽  
Judith Wellens ◽  
...  

It is unclear whether prior endemic coronavirus infections affect COVID-19 severity. Here, we show that in cases of fatal COVID-19, antibody responses to the SARS-COV-2 spike are directed against epitopes shared with endemic beta-coronaviruses in the S2 subunit of the SARS-CoV-2 spike protein. This immune response is associated with the compromised production of a de novo SARS-CoV-2 spike response among individuals with fatal COVID-19 outcomes.


Author(s):  
Shriya T.P. Gupta ◽  
Pablo Linares-Serrano ◽  
Basabdatta Sen Bhattacharya ◽  
Teresa Serrano-Gotarredona
Keyword(s):  

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 877 ◽  
Author(s):  
Xinqing Han ◽  
Yong Liu ◽  
Miguel L. Crespillo ◽  
Eva Zarkadoula ◽  
Qing Huang ◽  
...  

Systematic research on the response of crystal materials to the deposition of irradiation energy to electrons and atomic nuclei has attracted considerable attention since it is fundamental to understanding the behavior of various materials in natural and manmade radiation environments. This work examines and compares track formation in LiTaO3 induced by separate and combined effects of electronic excitation and nuclear collision. Under 0.71–6.17 MeV/u ion irradiation with electronic energy loss ranging from 6.0 to 13.8 keV/nm, the track damage morphologies evolve from discontinuous to continuous cylindrical zone. Based on the irradiation energy deposited via electronic energy loss, the subsequently induced energy exchange and temperature evolution processes in electron and lattice subsystems are calculated through the inelastic thermal spike model, demonstrating the formation of track damage and relevant thresholds of lattice energy and temperature. Combined with a disorder accumulation model, the damage accumulation in LiTaO3 produced by nuclear energy loss is also experimentally determined. The damage characterizations and inelastic thermal spike calculations further demonstrate that compared to damage-free LiTaO3, nuclear-collision-damaged LiTaO3 presents a more intense thermal spike response to electronic energy loss owing to the decrease in thermal conductivity and increase in electron–phonon coupling, which further enhance track damage.


2020 ◽  
Vol 32 (7) ◽  
pp. 1408-1429
Author(s):  
Jakub Fil ◽  
Dominique Chu

The multispike tempotron (MST) is a powersul, single spiking neuron model that can solve complex supervised classification tasks. It is also internally complex, computationally expensive to evaluate, and unsuitable for neuromorphic hardware. Here we aim to understand whether it is possible to simplify the MST model while retaining its ability to learn and process information. To this end, we introduce a family of generalized neuron models (GNMs) that are a special case of the spike response model and much simpler and cheaper to simulate than the MST. We find that over a wide range of parameters, the GNM can learn at least as well as the MST does. We identify the temporal autocorrelation of the membrane potential as the most important ingredient of the GNM that enables it to classify multiple spatiotemporal patterns. We also interpret the GNM as a chemical system, thus conceptually bridging computation by neural networks with molecular information processing. We conclude the letter by proposing alternative training approaches for the GNM, including error trace learning and error backpropagation.


Sign in / Sign up

Export Citation Format

Share Document