Position Selectivity in Scene- and Object-Responsive Occipitotemporal Regions

2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.

2005 ◽  
Vol 93 (5) ◽  
pp. 2374-2387 ◽  
Author(s):  
Masayuki Matsumoto ◽  
Hidehiko Komatsu

Although there is no retinal input within the blind spot, it is filled with the same visual attributes as its surround. Earlier studies showed that neural responses are evoked at the retinotopic representation of the blind spot in the primary visual cortex (V1) when perceptual filling-in of a surface or completion of a bar occurs. To determine whether these neural responses correlate with perception, we recorded from V1 neurons whose receptive fields overlapped the blind spot. Bar stimuli of various lengths were presented at the blind spots of monkeys while they performed a fixation task. One end of the bar was fixed at a position outside the blind spot, and the position of the other end was varied. Perceived bar length was measured using a similar set of bar stimuli in human subjects. As long as one end of the bar was inside the blind spot, the perceived bar length remained constant, and when the bar exceeded the blind spot, perceptual completion occurred, and the perceived bar length increased substantially. Some V1 neurons of the monkey exhibited a significant increase in their activity when the bar exceeded the blind spot, even though the amount of the retinal stimulation increased only slightly. These response increases coincided with perceptual completion observed in human subjects and were much larger than would be expected from simple spatial summation and could not be explained by contextual modulation. We conclude that the completed bar appearing on the part of the receptive field embedded within the blind spot gave rise to the observed increase in neuronal activity.


2021 ◽  
Vol 10 (7) ◽  
pp. 432
Author(s):  
Nicolai Moos ◽  
Carsten Juergens ◽  
Andreas P. Redecker

This paper describes a methodological approach that is able to analyse socio-demographic and -economic data in large-scale spatial detail. Based on the two variables, population density and annual income, one investigates the spatial relationship of these variables to identify locations of imbalance or disparities assisted by bivariate choropleth maps. The aim is to gain a deeper insight into spatial components of socioeconomic nexuses, such as the relationships between the two variables, especially for high-resolution spatial units. The used methodology is able to assist political decision-making, target group advertising in the field of geo-marketing and for the site searches of new shop locations, as well as further socioeconomic research and urban planning. The developed methodology was tested in a national case study in Germany and is easily transferrable to other countries with comparable datasets. The analysis was carried out utilising data about population density and average annual income linked to spatially referenced polygons of postal codes. These were disaggregated initially via a readapted three-class dasymetric mapping approach and allocated to large-scale city block polygons. Univariate and bivariate choropleth maps generated from the resulting datasets were then used to identify and compare spatial economic disparities for a study area in North Rhine-Westphalia (NRW), Germany. Subsequently, based on these variables, a multivariate clustering approach was conducted for a demonstration area in Dortmund. In the result, it was obvious that the spatially disaggregated data allow more detailed insight into spatial patterns of socioeconomic attributes than the coarser data related to postal code polygons.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Matthew T. Bryan ◽  
Elizabeth L. Martin ◽  
Aleksandra Pac ◽  
Andrew D. Gilbert ◽  
Feodor Y. Ogrin

AbstractBiological cilia generate fluid movement within viscosity-dominated environments using beating motions that break time-reversal symmetry. This creates a metachronal wave, which enhances flow efficiency. Artificially mimicking this behaviour could improve microfluidic point-of-care devices, since viscosity-dominated fluid dynamics impede fluid flow and mixing of reagents, limiting potential for multiplexing diagnostic tests. However, current biomimicry schemes require either variation in the hydrodynamic response across a cilia array or a complex magnetic anisotropy configuration to synchronise the actuation sequence with the driving field. Here, we show that simple modifications to the structural design introduce phase differences between individual actuators, leading to the spontaneous formation of metachronal waves. This generates flow speeds of up to 16 μm/s as far as 675 μm above the actuator plane. By introducing metachronal waves through lithographic structuring, large scale manufacture becomes feasible. Additionally, by demonstrating that metachronal waves emerge from non-uniformity in internal structural mechanics, we offer fresh insight into the mechanics of cilia coordination.


This is the first occasion on which I have had the great honour of addressing the Royal Society on this anniversary of its foundation. According to custom, I begin with brief mention of those whom death has taken from our Fellowship during the past year, and whose memories we honour. Alfred Young (1873-1940), distinguished for his contributions to pure mathematics, was half brother to another of our Fellows, Sydney Young, a chemist of eminence. Alfred Young had an insight into the symbolic structure and manipulation of algebra, which gave him a special place among his mathematical contemporaries. After a successful career at Cambridge he entered the Church, and passed his later years in the country rectory of Birdbrook, Essex. His devotion to mathematics continued, however, throughout his life, and he published a steady stream of work in the branch of algebra which he had invented, and named ‘quantitative substitutional analysis’. He lived to see his methods adopted by Weyl in his quantum mechanics and spectroscopy. He was elected to our Fellowship in 1934. With the death of Miles Walker (1868-1941) the Society loses a pioneer in large-scale electrical engineering. Walker was a man of wide interests. He was trained first for the law, and even followed its practice for a period. Later he studied electrical engineering under Sylvanus Thompson at the Finsbury Technical College and became his assistant for several years. Thereafter, encouraged by Thompson, he entered St John’s College, Cambridge, with a scholarship, and graduated with 1st Class Honours in both the Natural Sciences and the Engineering Tripos. Having entered the service of the British Westinghouse Company, he was sent by them to the United States of America to study electrical engineering with the parent company in Pittsburgh. On his return to England he became their leading designer of high-speed electrical generators


Author(s):  
Sigrún Dögg Eddudóttir ◽  
Eva Svensson ◽  
Stefan Nilsson ◽  
Anneli Ekblom ◽  
Karl-Johan Lindholm ◽  
...  

AbstractShielings are the historically known form of transhumance in Scandinavia, where livestock were moved from the farmstead to sites in the outlands for summer grazing. Pollen analysis has provided a valuable insight into the history of shielings. This paper presents a vegetation reconstruction and archaeological survey from the shieling Kårebolssätern in northern Värmland, western Sweden, a renovated shieling that is still operating today. The first evidence of human activities in the area near Kårebolssätern are Hordeum- and Cannabis-type pollen grains occurring from ca. 100 bc. Further signs of human impact are charcoal and sporadic occurrences of apophyte pollen from ca. ad 250 and pollen indicating opening of the canopy ca. ad 570, probably a result of modification of the forest for grazing. A decrease in land use is seen between ad 1000 and 1250, possibly in response to a shift in emphasis towards large scale commodity production in the outlands. Emphasis on bloomery iron production and pitfall hunting may have caused a shift from agrarian shieling activity. The clearest changes in the pollen assemblage indicating grazing and cultivation occur from the mid-thirteenth century, coinciding with wetter climate at the beginning of the Little Ice Age. The earliest occurrences of anthropochores in the record predate those of other shieling sites in Sweden. The pollen analysis reveals evidence of land use that predates the results of the archaeological survey. The study highlights how pollen analysis can reveal vegetation changes where early archaeological remains are obscure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karel Fric

PurposeThis article aims to shed more light on seemingly contradicting labour market outcomes of lesbians: they were found to have similar unemployment rates as straight women but their unemployment spells are significantly shorter. No such contradiction is observed for gays who seem to have on average a higher unemployment rate and longer unemployment spells compared to straight men.Design/methodology/approachThe main hypothesis is that lesbian and gay employees spend ceteris paribus shorter time working for a given employer (employer tenure) than comparable straight people. This hypothesis is tested on EU Labour Force Survey data using multi-level regression model.FindingsConsistently with the predictions, lesbians and gays were found to have significantly shorter employer tenure than their straight counterparts. These differences remained significant after controlling for individual, workplace and occupational characteristics. The results suggest that shorter employer tenure of lesbians and (possibly) gays is driven by labour demand factors.Originality/valueTo author's knowledge this is the first large-scale quantitative study that compares the employer tenure between lesbians, gays and comparable heterosexuals. The study provides additional insight into mechanisms that lead to (lack of) differentials in unemployment probability between these groups.


2021 ◽  
Vol 63 (8) ◽  
pp. 457-464
Author(s):  
S Lahdelma

The time derivatives of acceleration offer a great advantage in detecting impact-causing faults at an early stage in condition monitoring applications. Defective rolling bearings and gears are common faults that cause impacts. This article is based on extensive real-world measurements, through which large-scale machines have been studied. Numerous laboratory experiments provide additional insight into the matter. A practical solution for detecting faults with as few features as possible is to measure the root mean square (RMS) velocity according to the standards in the frequency range from 10 Hz to 1000 Hz and the peak value of the second time derivative of acceleration, ie snap. Measuring snap produces good results even when the upper cut-off frequency is as low as 2 kHz or slightly higher. This is valuable information when planning the mounting of accelerometers.


Sign in / Sign up

Export Citation Format

Share Document