Lack of dcf1 leads to neuronal migration delay, axonal swollen and autism-related deficits
AbstractPerturbed neuronal migration and abnormal axonogenesis have been shown to be implicated in the pathogenesis of autism spectrum disorder (ASD). However, the molecular mechanism remains unknown. Here we demonstrate that dendritic cell factor 1(DCF1) is involved in neuronal migration and axonogenesis. The deletion of dcf1 in mice delays the localization of callosal projection neurons, while dcf1 overexpression restores normal migration. Delayed neurons appear as axon swelling and axonal boutons loss, resulting in a permanent deficit in the callosal projections. Western blot analysis indicates that absence of dcf1 leads to the abnormal activation of ERK signal. Differential protein expression assay shows that PEBP1, a negative regulator of the ERK signal, is significant downregulation in dcf1 KO mice. Direct interaction between DCF1 and PEBP1 is confirmed by Co-immunoprecipitation test, thus indicating that DCF1 regulates the ERK signal in a PEBP1-dependent pattern. As a result of the neurodevelopmental migration disorder, dcf1 deletion results in ASD-like behaviors in mice. This finding identifies a link between abnormal activated ERK signaling, delayed neuronal migration and autistic-like behaviors in humans.