scholarly journals RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains

Author(s):  
Chengwen Wei ◽  
Mengwen Sun ◽  
Xiaoxuan Sun ◽  
Hu Meng ◽  
Qiongwei Li ◽  
...  

AbstractThe radial migration of cortical pyramidal neurons (PNs) during corticogenesis is necessary for establishing a multilayered cerebral cortex. Neuronal migration defects are considered a critical etiology of neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia, epilepsy, and intellectual disability (ID). TRIO is a high-risk candidate gene for ASDs and ID. However, its role in embryonic radial migration and the etiology of ASDs and ID are not fully understood. In this study, we found that the in vivo conditional knockout or in utero knockout of Trio in excitatory precursors in the neocortex caused aberrant polarity and halted the migration of late-born PNs. Further investigation of the underlying mechanism revealed that the interaction of the Trio N-terminal SH3 domain with Myosin X mediated the adherence of migrating neurons to radial glial fibers through regulating the membrane location of neuronal cadherin (N-cadherin). Also, independent or synergistic overexpression of RAC1 and RHOA showed different phenotypic recoveries of the abnormal neuronal migration by affecting the morphological transition and/or the glial fiber-dependent locomotion. Taken together, our findings clarify a novel mechanism of Trio in regulating N-cadherin cell surface expression via the interaction of Myosin X with its N-terminal SH3 domain. These results suggest the vital roles of the guanine nucleotide exchange factor 1 (GEF1) and GEF2 domains in regulating radial migration by activating their Rho GTPase effectors in both distinct and cooperative manners, which might be associated with the abnormal phenotypes in neurodevelopmental disorders.

2021 ◽  
Author(s):  
Xavier Caubit ◽  
Paolo Gubellini ◽  
Pierre L Roubertoux ◽  
Michele Carlier ◽  
Jordan Molitor ◽  
...  

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. We show that in the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABA interneurons, while not in cholinergic interneurons or glial cells. TSHZ3-expressing cells, which are predominantly SCINs in the striatum, represent a low proportion of neurons in the ascending cholinergic projection system. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and plasticity at corticostriatal synapses, with neither cortical neuron loss nor impaired layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.


2020 ◽  
Author(s):  
Ruili Feng ◽  
Yanlu Chen ◽  
Yangyang Sun ◽  
Guanghong Luo ◽  
Jianjian Guo ◽  
...  

AbstractPerturbed neuronal migration and abnormal axonogenesis have been shown to be implicated in the pathogenesis of autism spectrum disorder (ASD). However, the molecular mechanism remains unknown. Here we demonstrate that dendritic cell factor 1(DCF1) is involved in neuronal migration and axonogenesis. The deletion of dcf1 in mice delays the localization of callosal projection neurons, while dcf1 overexpression restores normal migration. Delayed neurons appear as axon swelling and axonal boutons loss, resulting in a permanent deficit in the callosal projections. Western blot analysis indicates that absence of dcf1 leads to the abnormal activation of ERK signal. Differential protein expression assay shows that PEBP1, a negative regulator of the ERK signal, is significant downregulation in dcf1 KO mice. Direct interaction between DCF1 and PEBP1 is confirmed by Co-immunoprecipitation test, thus indicating that DCF1 regulates the ERK signal in a PEBP1-dependent pattern. As a result of the neurodevelopmental migration disorder, dcf1 deletion results in ASD-like behaviors in mice. This finding identifies a link between abnormal activated ERK signaling, delayed neuronal migration and autistic-like behaviors in humans.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Kanako Ishizuka ◽  
Tomoyuki Yoshida ◽  
Takeshi Kawabata ◽  
Ayako Imai ◽  
Hisashi Mori ◽  
...  

Abstract Background Rare genetic variants contribute to the etiology of both autism spectrum disorder (ASD) and schizophrenia (SCZ). Most genetic studies limit their focus to likely gene-disrupting mutations because they are relatively easier to interpret their effects on the gene product. Interpretation of missense variants is also informative to some pathophysiological mechanisms of these neurodevelopmental disorders; however, their contribution has not been elucidated because of relatively small effects. Therefore, we characterized missense variants detected in NRXN1, a well-known neurodevelopmental disease-causing gene, from individuals with ASD and SCZ. Methods To discover rare variants with large effect size and to evaluate their role in the shared etiopathophysiology of ASD and SCZ, we sequenced NRXN1 coding exons with a sample comprising 562 Japanese ASD and SCZ patients, followed by a genetic association analysis in 4273 unrelated individuals. Impact of each missense variant detected here on cell surface expression, interaction with NLGN1, and synaptogenic activity was analyzed using an in vitro functional assay and in silico three-dimensional (3D) structural modeling. Results Through mutation screening, we regarded three ultra-rare missense variants (T737M, D772G, and R856W), all of which affected the LNS4 domain of NRXN1α isoform, as disease-associated variants. Diagnosis of individuals with T737M, D772G, and R856W was 1ASD and 1SCZ, 1ASD, and 1SCZ, respectively. We observed the following phenotypic and functional burden caused by each variant. (i) D772G and R856W carriers had more serious social disabilities than T737M carriers. (ii) In vitro assay showed reduced cell surface expression of NRXN1α by D772G and R856W mutations. In vitro functional analysis showed decreased NRXN1α-NLGN1 interaction of T737M and D772G mutants. (iii) In silico 3D structural modeling indicated that T737M and D772G mutations could destabilize the rod-shaped structure of LNS2-LNS5 domains, and D772G and R856W could disturb N-glycan conformations for the transport signal. Conclusions The combined data suggest that missense variants in NRXN1 could be associated with phenotypes of neurodevelopmental disorders beyond the diagnosis of ASD and/or SCZ.


2020 ◽  
Author(s):  
Laurie John Hannigan ◽  
Ragna Bugge Askeland ◽  
Helga Ask ◽  
Martin Tesli ◽  
Elizabeth Corfield ◽  
...  

BackgroundEarly developmental milestones, such as the age at first walking or talking, are associated with later diagnoses of neurodevelopmental disorders, but the relationship to genetic risk for neurodevelopmental disorders are unknown. Here, we investigate associations between genetic liability to autism spectrum disorder (autism), attention deficit hyperactivity disorder (ADHD), and schizophrenia and attainment of early-life language and motor development milestones.MethodsWe use data from a genotyped sub-set (N = 15 205) of children in the Norwegian Mother, Father and Child Cohort Study (MoBa). In this sample, we calculate polygenic scores for autism; ADHD and schizophrenia and predict maternal reports of children’s age at first walking and talking, motor delays at 18 months, language delays at 3 years, and a generalized measure of concerns about development. We use linear and probit regression models in a multi-group framework to test for sex differences.ResultsADHD polygenic scores predicted earlier walking age in both males and females (β=-0.037, pFDR=0.001), and earlier first use of sentences (β=-0.087, pFDR=0.032) but delayed language development at 3 years in females only (β=0.194, pFDR=0.001). Additionally, we found evidence that autism polygenic scores were associated with later walking (β=0.027, pFDR=0.024) and motor delays at 18 months (β = 0.065, pFDR=0.028). Schizophrenia polygenic scores were associated with a measure of general concerns about development at 3 years in females only (β=0.132, pFDR=0.024).ConclusionsGenetic liabilities for neurodevelopmental disorders show some specific associations with measures of early motor and language development in the general population, including the age at which children first walk and talk. Associations are generally small and occasionally in unexpected directions. Sex differences are evident in some instances, but clear patterns across different polygenic scores and outcomes are hard to discern. These findings suggest that genetic susceptibility for neurodevelopmental disorders is manifested in the timing of developmental milestones in infancy.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Mark Wade ◽  
Heather Prime ◽  
Sheri Madigan

Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment.


2019 ◽  
Vol 27 (9) ◽  
pp. 1445-1455 ◽  
Author(s):  
Ron Nudel ◽  
Michael E. Benros ◽  
Morten Dybdahl Krebs ◽  
Rosa Lundbye Allesøe ◽  
Camilla Koldbæk Lemvigh ◽  
...  

AbstractHuman leukocyte antigen (HLA) genes encode proteins with important roles in the regulation of the immune system. Many studies have also implicated HLA genes in psychiatric and neurodevelopmental disorders. However, these studies usually focus on one disorder and/or on one HLA candidate gene, often with small samples. Here, we access a large dataset of 65,534 genotyped individuals consisting of controls (N = 19,645) and cases having one or more of autism spectrum disorder (N = 12,331), attention deficit hyperactivity disorder (N = 14,397), schizophrenia (N = 2401), bipolar disorder (N = 1391), depression (N = 18,511), anorexia (N = 2551) or intellectual disability (N = 3175). We imputed participants’ HLA alleles to investigate the involvement of HLA genes in these disorders using regression models. We found a pronounced protective effect of DPB1*1501 on susceptibility to autism (p = 0.0094, OR = 0.72) and intellectual disability (p = 0.00099, OR = 0.41), with an increased protective effect on a comorbid diagnosis of both disorders (p = 0.003, OR = 0.29). We also identified a risk allele for intellectual disability, B*5701 (p = 0.00016, OR = 1.33). Associations with both alleles survived FDR correction and a permutation procedure. We did not find significant evidence for replication of previously-reported associations for autism or schizophrenia. Our results support an implication of HLA genes in autism and intellectual disability, which requires replication by other studies. Our study also highlights the importance of large sample sizes in HLA association studies.


2021 ◽  
pp. 1-8
Author(s):  
L. Propper ◽  
A. Sandstrom ◽  
S. Rempel ◽  
E. Howes Vallis ◽  
S. Abidi ◽  
...  

Abstract Background Offspring of parents with major mood disorders (MDDs) are at increased risk for early psychopathology. We aim to compare the rates of neurodevelopmental disorders in offspring of parents with bipolar disorder, major depressive disorder, and controls. Method We established a lifetime diagnosis of neurodevelopmental disorders [attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disabilities, specific learning disorders, and motor disorders] using the Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version in 400 participants (mean age 11.3 + s.d. 3.9 years), including 93 offspring of parents with bipolar disorder, 182 offspring of parents with major depressive disorder, and 125 control offspring of parents with no mood disorder. Results Neurodevelopmental disorders were elevated in offspring of parents with bipolar disorder [odds ratio (OR) 2.34, 95% confidence interval (CI) 1.23–4.47, p = 0.010] and major depressive disorder (OR 1.87, 95% CI 1.03–3.39, p = 0.035) compared to controls. This difference was driven by the rates of ADHD, which were highest among offspring of parents with bipolar disorder (30.1%), intermediate in offspring of parents with major depressive disorder (24.2%), and lowest in controls (14.4%). There were no significant differences in frequencies of other neurodevelopmental disorders between the three groups. Chronic course of mood disorder in parents was associated with higher rates of any neurodevelopmental disorder and higher rates of ADHD in offspring. Conclusions Our findings suggest monitoring for ADHD and other neurodevelopmental disorders in offspring of parents with MDDs may be indicated to improve early diagnosis and treatment.


2021 ◽  
pp. 1-11
Author(s):  
Rosa Bosch ◽  
Mireia Pagerols ◽  
Cristina Rivas ◽  
Laura Sixto ◽  
Laura Bricollé ◽  
...  

Abstract Background Prevalence estimates of neurodevelopmental disorders (ND) are essential for treatment planning. However, epidemiological research has yielded highly variable rates across countries, including Spain. This study examined the prevalence and sociodemographic correlates of ND in a school sample of Spanish children and adolescents. Methods The Child Behaviour Checklist/Teacher's Report Form/Youth Self-Report and the Conners' Rating Scales were administered for screening purposes. Additionally, teachers provided information on reading and writing difficulties. Subjects who screened positive were interviewed for diagnostic confirmation according to the Diagnostic and Statistical Manual of Mental Disorders criteria. The final population comprised 6834 students aged 5–17. Multivariate analyses were performed to determine the influence of gender, age, educational stage, school type, socioeconomic status (SES), and ethnicity on the prevalence estimates. Results A total of 1249 (18.3%) subjects met criteria for at least one ND, although only 423 had already received a diagnosis. Specifically, the following prevalence rates were found: intellectual disabilities (ID), 0.63%; communication disorders, 1.05%; autism spectrum disorder (ASD), 0.70%; attention-deficit/hyperactivity disorder (ADHD), 9.92%; specific learning disorder (SLD), 10.0%; and motor disorders, 0.76%. Students of foreign origin and from low SES evidenced higher odds of having ID. Boys were more likely to display ASD or a motor disorder. Age, SES, and ethnicity were significant predictors for SLD, while communication disorders and ADHD were also associated with gender. Conclusions The prevalence of ND among Spanish students is consistent with international studies. However, a substantial proportion had never been previously diagnosed, which emphasise the need for early detection and intervention programmes.


Sign in / Sign up

Export Citation Format

Share Document