differential protein
Recently Published Documents


TOTAL DOCUMENTS

551
(FIVE YEARS 72)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Vol 22 (23) ◽  
pp. 13028
Author(s):  
Richard Zimmermann ◽  
Sven Lang ◽  
Monika Lerner ◽  
Friedrich Förster ◽  
Duy Nguyen ◽  
...  

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.


Author(s):  
Richard Zimmermann ◽  
Sven Lang ◽  
Monika Lerner ◽  
Friedrich G Förster ◽  
Duy Nguyen ◽  
...  

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of about 10,000 different soluble and membrane proteins in humans. It involves co- or post-translational targeting of precursor polypeptides to the ER and their subsequent membrane insertion or translocation. So far, three pathways for ER targeting of precursor polypeptides plus four pathways for ER targeting of mRNAs were described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in targeting and, putatively, inserting monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose if this pathway may play a more general role in ER protein targeting, i.e. represents a fourth pathway for ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach, which involves label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells and differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3-clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices and belonging to the secretory pathway were also negatively affected by PEX3-deficiency, which may suggest compromised collagen biogenesis as a hitherto unknown contributor to organ failures in the respective Zellweger patients.


2021 ◽  
Vol 22 (22) ◽  
pp. 12176
Author(s):  
Eduardo Anitua ◽  
Francisco Muruzabal ◽  
Ander Pino ◽  
Roberto Prado ◽  
Mikel Azkargorta ◽  
...  

Over the last three decades, there has been special interest in developing drugs that mimic the characteristics of natural tears for use it in the treatment of several ocular surface disorders. Interestingly, the composition of blood plasma is very similar to tears. Therefore, different blood-derived products like autologous serum (AS) and plasma rich in growth factors (PRGF) have been developed for the treatment of diverse ocular pathologies. However, scarce studies have been carried out to analyze the differences between both types of blood-derived products. In the present study, blood from three healthy donors was drawn and processed to obtain AS and PRGF eye drops. Then, human corneal stromal keratocytes (HK) were treated with PRGF or undiluted AS. Proteomic analysis was carried out to analyze and characterize the differential protein profiles between PRGF and AS, and the differentially expressed proteins in HK cells after PRGF and AS treatment. The results obtained in the present study show that undiluted AS induces the activation of different pathways related to an inflammatory, angiogenic, oxidative stress and scarring response in HK cells regarding PRGF. These results suggest that PRGF could be a better alternative than AS for the treatment of ocular surface disorders.


2021 ◽  
Vol 22 (19) ◽  
pp. 10516
Author(s):  
Emmanuel Pina-Jiménez ◽  
Fernando Calzada ◽  
Elihú Bautista ◽  
Rosa María Ordoñez-Razo ◽  
Claudia Velázquez ◽  
...  

Sesquiterpene lactones are of pharmaceutical interest due their cytotoxic and antitumor properties, which are commonly found within plants of several genera from the Asteraceae family such as the Decachaeta genus. From Decachaeta incompta four heliangolide, namely incomptines A-D have been isolated. In this study, cytotoxic properties of incomptine A (IA) were evaluated on four lymphoma cancer cell lines: U-937, Farage, SU-DHL-2, and REC-1. The type of cell death induced by IA and its effects on U-937 cells were analyzed based on its capability to induce apoptosis and produce reactive oxygen species (ROS) through flow cytometry with 4′,6-diamidino-2-phenylindole staining, dual annexin V/DAPI staining, and dichlorofluorescein 2′,7′-diacetate, respectively. A differential protein expression analysis study was carried out by isobaric tags for relative and absolute quantitation (iTRAQ) through UPLC-MS/MS. Results reveal that IA exhibited cytotoxic activity against the cell line U-937 (CC50 of 0.12 ± 0.02 μM) and the incubation of these cells in presence of IA significantly increased apoptotic population and intracellular ROS levels. In the proteomic approach 1548 proteins were differentially expressed, out of which 587 exhibited a fold-change ≥ 1.5 and 961 a fold-change ≤ 0.67. Most of these differentially regulated proteins are involved in apoptosis, oxidative stress, glycolytic metabolism, or cytoskeleton structuration.


Author(s):  
Yusuke Matsui ◽  
Yuichi Abe ◽  
Kohei Uno ◽  
Satoru Miyano

Abstract Motivation The full spectrum of abnormalities in cancer-associated protein complexes remains largely unknown. Comparing the co-expression structure of each protein complex between tumor and healthy cells may provide insights regarding cancer-specific protein dysfunction. However, the technical limitations of mass spectrometry-based proteomics, including contamination with biological protein variants, causes noise that leads to non-negligible over- (or under-) estimating co-expression. Results We propose a robust algorithm for identifying protein complex aberrations in cancer based on differential protein co-expression testing. Our method based on a copula is sufficient for improving identification accuracy with noisy data compared to conventional linear correlation-based approaches. As an application, we use large-scale proteomic data from renal cancer to show that important protein complexes, regulatory signaling pathways and drug targets can be identified. The proposed approach surpasses traditional linear correlations to provide insights into higher-order differential co-expression structures. Availability and implementation https://github.com/ymatts/RoDiCE. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Wang Xiang ◽  
Zhiyong Long ◽  
Jinsong Zeng ◽  
Xiaofei Zhu ◽  
Mengxia Yuan ◽  
...  

Objective. To explore the therapeutic targets, network modules, and coexpressed genes of Radix Rhei Et Rhizome intervention in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To explore the differential proteins of Radix Rhei Et Rhizome intervention in CI, conduct bioinformatics verification, and initially explain the possible therapeutic mechanism of Radix Rhei Et Rhizome intervention in CI through proteomics. Methods. The TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a protein-protein interaction (PPI) network and to screen out core genes and detection network modules. Then, DAVID and Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further explore the mechanism of Radix Rhei Et Rhizome intervention in CI. Results. (1) A total of 14 Radix Rhei Et Rhizome potential components and 425 potential targets were obtained. The core components include sennoside A, palmidin A, emodin, toralactone, and so on. The potential targets were combined with 297 CI genes to construct a PPI network. The targets shared by Radix Rhei Et Rhizome and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. The biological processes that Radix Rhei Et Rhizome may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis, endothelial cell apoptosis, coagulation, and neuronal apoptosis. The signaling pathways include Ras, PI3K-Akt, TNF, FoxO, HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling pathway, and so on. Conclusion. This study combined network pharmacology and proteomics to explore the main material basis of Radix Rhei Et Rhizome for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. The mechanism may be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF, FoxO, HIF-1, Rap1, and axon guidance).


2021 ◽  
Vol 21 (3) ◽  
pp. 100533
Author(s):  
Backialakshmi Sekar ◽  
Arunachalam Arangasamy ◽  
Sharanya Jeevendra Naidu ◽  
Ippala Janardhan Reddy ◽  
Raghavendra Bhatta

Sign in / Sign up

Export Citation Format

Share Document