scholarly journals Wald’s martingale and the Moran process

2020 ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

AbstractMany models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moran birth-death process, where that quantity is the number of mutants in a population. In such processes we are often interested in their absorption (i.e. fixation) probabilities, and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth-death model. Instead of considering the time to absorption, we consider a closely-related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical, and exact. The parameter dependence of the characteristic functions is explicit, so it is easy to explore their properties in parameter space. We also use them to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so we can quickly and tractably obtain absorption probabilities and times of evolutionary stochastic processes.Author summaryThe Moran process is a probabilistic birth-death model of evolution. A mutant is introduced to an indigenous population, and we randomly choose organisms to live or die on subsequent time steps. Our goals are to calculate the probabilities that the mutant eventually dominates the population or goes extinct, and the distribution of time it requires to do so. The conditional distributions of time are difficult to obtain for the Moran process, so we consider a slightly different but related problem. We instead calculate the conditional distributions of the number of times that the mutant population size changes before it dominates the population or goes extinct. We use a martingale identified by Abraham Wald to obtain elegant and exact expressions for those distributions. We then use them to approximate conditional time distributions, and we show when that approximation is accurate. Our analysis outlines the basic concepts martingales and demonstrates why they are a formidable tool for studying probabilistic evolutionary models such as the Moran process.

Author(s):  
Travis Monk ◽  
André van Schaik

Many models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moranbirth–death process, where that quantity is the number of mutants in a population. In such processes, we are often interested in their absorption (i.e. fixation) probabilities and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth–death model. Instead of considering the time to absorption, we consider a closely related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical and exact, and their parameter dependence is explicit. We use our results to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so when they are applicable, we can quickly and tractably obtain absorption probabilities and times of evolutionary models.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald’s martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.


2003 ◽  
Vol 40 (3) ◽  
pp. 821-825 ◽  
Author(s):  
Damian Clancy ◽  
Philip K. Pollett

For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martínez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, …}. In the case of a birth–death process, the components of Φ(ν) can be written down explicitly for any given distribution ν. Using this explicit representation, we will show that Φ preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefèvre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.


2004 ◽  
Vol 41 (4) ◽  
pp. 1211-1218 ◽  
Author(s):  
Ben Cairns ◽  
P. K. Pollett

The birth, death and catastrophe process is an extension of the birth–death process that incorporates the possibility of reductions in population of arbitrary size. We will consider a general form of this model in which the transition rates are allowed to depend on the current population size in an arbitrary manner. The linear case, where the transition rates are proportional to current population size, has been studied extensively. In particular, extinction probabilities, the expected time to extinction, and the distribution of the population size conditional on nonextinction (the quasi-stationary distribution) have all been evaluated explicitly. However, whilst these characteristics are of interest in the modelling and management of populations, processes with linear rate coefficients represent only a very limited class of models. We address this limitation by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still be found for the expected extinction times.


2003 ◽  
Vol 40 (03) ◽  
pp. 821-825 ◽  
Author(s):  
Damian Clancy ◽  
Philip K. Pollett

For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martínez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, …}. In the case of a birth–death process, the components of Φ(ν) can be written down explicitly for any given distributionν. Using this explicit representation, we will show that Φ preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefèvre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.


2004 ◽  
Vol 41 (04) ◽  
pp. 1211-1218 ◽  
Author(s):  
Ben Cairns ◽  
P. K. Pollett

The birth, death and catastrophe process is an extension of the birth–death process that incorporates the possibility of reductions in population of arbitrary size. We will consider a general form of this model in which the transition rates are allowed to depend on the current population size in an arbitrary manner. The linear case, where the transition rates are proportional to current population size, has been studied extensively. In particular, extinction probabilities, the expected time to extinction, and the distribution of the population size conditional on nonextinction (the quasi-stationary distribution) have all been evaluated explicitly. However, whilst these characteristics are of interest in the modelling and management of populations, processes with linear rate coefficients represent only a very limited class of models. We address this limitation by allowing for a wider range of catastrophic events. Despite this generalisation, explicit expressions can still be found for the expected extinction times.


1997 ◽  
Vol 29 (1) ◽  
pp. 185-204 ◽  
Author(s):  
M. Kijima ◽  
M. G. Nair ◽  
P. K. Pollett ◽  
E. A. Van Doorn

In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.


2020 ◽  
Author(s):  
Jérémy Andréoletti ◽  
Antoine Zwaans ◽  
Rachel C. M. Warnock ◽  
Gabriel Aguirre-Fernández ◽  
Joëlle Barido-Sottani ◽  
...  

AbstractPhylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, population size through time for clades of interest, based on molecular sequence data. In the fields of epidemiology and macroevolution these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of “total-evidence” analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, i.e. lacking morphological and molecular data, which we call occurrences, provide invaluable information to reconstruct past population sizes.Here, we present new methodological developments around the Fossilized Birth-Death Process enabling us to (i) efficiently incorporate occurrence data while remaining computationally tractable and scalable; (ii) consider piecewise-constant birth, death and sampling rates; and (iii) reconstruct past population sizes, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions.We finally illustrate our new implementation using two empirical datasets stemming from the fields of epidemiology and macroevolution. In epidemiology, we apply our model to the Covid-19 outbreak on the Diamond Princess ship. We infer the total prevalence throughout the outbreak, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we present an empirical case study of cetaceans. We infer the diversity trajectory using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. Our case studies highlight that the advances we present allow us to further bridge the gap between between epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics.


1997 ◽  
Vol 29 (01) ◽  
pp. 185-204
Author(s):  
M. Kijima ◽  
M. G. Nair ◽  
P. K. Pollett ◽  
E. A. Van Doorn

In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.


Sign in / Sign up

Export Citation Format

Share Document