scholarly journals Correction to ‘Wald’s martingale and the conditional distributions of absorption time in the Moran process’

Author(s):  
Travis Monk ◽  
André van Schaik
Author(s):  
Travis Monk ◽  
André van Schaik

Many models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moranbirth–death process, where that quantity is the number of mutants in a population. In such processes, we are often interested in their absorption (i.e. fixation) probabilities and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth–death model. Instead of considering the time to absorption, we consider a closely related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical and exact, and their parameter dependence is explicit. We use our results to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so when they are applicable, we can quickly and tractably obtain absorption probabilities and times of evolutionary models.


2020 ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

AbstractMany models of evolution are stochastic processes, where some quantity of interest fluctuates randomly in time. One classic example is the Moran birth-death process, where that quantity is the number of mutants in a population. In such processes we are often interested in their absorption (i.e. fixation) probabilities, and the conditional distributions of absorption time. Those conditional time distributions can be very difficult to calculate, even for relatively simple processes like the Moran birth-death model. Instead of considering the time to absorption, we consider a closely-related quantity: the number of mutant population size changes before absorption. We use Wald’s martingale to obtain the conditional characteristic functions of that quantity in the Moran process. Our expressions are novel, analytical, and exact. The parameter dependence of the characteristic functions is explicit, so it is easy to explore their properties in parameter space. We also use them to approximate the conditional characteristic functions of absorption time. We state the conditions under which that approximation is particularly accurate. Martingales are an elegant framework to solve principal problems of evolutionary stochastic processes. They do not require us to evaluate recursion relations, so we can quickly and tractably obtain absorption probabilities and times of evolutionary stochastic processes.Author summaryThe Moran process is a probabilistic birth-death model of evolution. A mutant is introduced to an indigenous population, and we randomly choose organisms to live or die on subsequent time steps. Our goals are to calculate the probabilities that the mutant eventually dominates the population or goes extinct, and the distribution of time it requires to do so. The conditional distributions of time are difficult to obtain for the Moran process, so we consider a slightly different but related problem. We instead calculate the conditional distributions of the number of times that the mutant population size changes before it dominates the population or goes extinct. We use a martingale identified by Abraham Wald to obtain elegant and exact expressions for those distributions. We then use them to approximate conditional time distributions, and we show when that approximation is accurate. Our analysis outlines the basic concepts martingales and demonstrates why they are a formidable tool for studying probabilistic evolutionary models such as the Moran process.


2016 ◽  
Vol 49 (1) ◽  
pp. 137-159 ◽  
Author(s):  
Josep Díaz ◽  
Leslie Ann Goldberg ◽  
David Richerby ◽  
Maria Serna

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Travis Monk ◽  
André van Schaik

Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald’s martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Emilio Gómez-Déniz ◽  
Enrique Calderín-Ojeda

We jointly model amount of expenditure for outpatient visits and number of outpatient visits by considering both dependence and simultaneity by proposing a bivariate structural model that describes both variables, specified in terms of their conditional distributions. For that reason, we assume that the conditional expectation of expenditure for outpatient visits with respect to the number of outpatient visits and also, the number of outpatient visits expectation with respect to the expenditure for outpatient visits is related by taking a linear relationship for these conditional expectations. Furthermore, one of the conditional distributions obtained in our study is used to derive Bayesian premiums which take into account both the number of claims and the size of the correspondent claims. Our proposal is illustrated with a numerical example based on data of health care use taken from Medical Expenditure Panel Survey (MEPS), conducted by the U.S. Agency of Health Research and Quality.


2020 ◽  
Vol 57 (4) ◽  
pp. 1045-1069
Author(s):  
Matija Vidmar

AbstractFor a spectrally negative self-similar Markov process on $[0,\infty)$ with an a.s. finite overall supremum, we provide, in tractable detail, a kind of conditional Wiener–Hopf factorization at the maximum of the absorption time at zero, the conditioning being on the overall supremum and the jump at the overall supremum. In a companion result the Laplace transform of this absorption time (on the event that the process does not go above a given level) is identified under no other assumptions (such as the process admitting a recurrent extension and/or hitting zero continuously), generalizing some existing results in the literature.


Author(s):  
Charles K. Amponsah ◽  
Tomasz J. Kozubowski ◽  
Anna K. Panorska

AbstractWe propose a new stochastic model describing the joint distribution of (X,N), where N is a counting variable while X is the sum of N independent gamma random variables. We present the main properties of this general model, which include marginal and conditional distributions, integral transforms, moments and parameter estimation. We also discuss in more detail a special case where N has a heavy tailed discrete Pareto distribution. An example from finance illustrates the modeling potential of this new mixed bivariate distribution.


Sign in / Sign up

Export Citation Format

Share Document