scholarly journals X-chromosome dosage compensation dynamics in human early embryos

2020 ◽  
Author(s):  
Kevin Huang ◽  
Qiao Zeng ◽  
Yun Feng ◽  
Youjin Hu ◽  
Qin An ◽  
...  

AbstractIn mammals, female cells are obliged to inactivate one of two X chromosomes to achieve dosage parity with the single X chromosome in male cells, and it is also thought that the single active X chromosome is increased 2-fold to achieve dosage balance with two sets of autosomes (X:A ratio = 1, or Ohno’s hypothesis). However, the ontogeny of X-chromosome inactivation and augmentation of the single active X remains unclear during human embryogenesis. Here, we perform single-cell RNA-seq analysis to examine the timing of X:A balancing and X-inactivation (XCI) in pre- and peri-implantation human embryos up to fourteen days in culture. We find that X-chromosome gene expression in both male and female preimplantation embryos is approximately balanced with autosomes (X:A ratio = 1) after embryonic genome activation (EGA) and persists through fourteen days in vitro. Cross-species analysis of preimplantation embryo also show balanced X:A ratio within the first few days of development. By single-cell mRNA SNP profiling, we find XCI beginning in day 6-7 blastocyst embryos, but does not affect X:A dosage balance. XCI is most evident in trophoectoderm (TE) cells, but can also be observed in a small number of inner cell mass (ICM)-derived cells including primitive endoderm (PE) and epiblast (EPI) cells. Analysis between individual XaXa and XaXi sister cells from the same embryo reveals random XCI and persistently balanced X:A ratio, including sister cells transitioning between XaXa and XaXi states. We therefore conclude that the male X-chromosome undergoes X chromosome augmentation prior to the simultaneous X-chromosome inactivation and augmentation in females. Together, our data demonstrate an evolutionally conserved model of X chromosome dosage compensation in humans and other mammalian species.

2011 ◽  
Vol 47 (3) ◽  
pp. 354-357 ◽  
Author(s):  
E. N. Tolmacheva ◽  
A. A. Kashevarova ◽  
N. N. Sukhanova ◽  
V. N. Kharkov ◽  
I. N. Lebedev

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1016 ◽  
Author(s):  
Bo Yu ◽  
Helena T. A. van Tol ◽  
Tom A.E. Stout ◽  
Bernard A. J. Roelen

X-chromosome inactivation (XCI) is a developmental process that aims to equalize the dosage of X-linked gene products between XY males and XX females in eutherian mammals. In female mouse embryos, paternal XCI is initiated at the 4-cell stage; however, the X chromosome is reactivated in the inner cell mass cells of blastocysts, and random XCI is subsequently initiated in epiblast cells. However, recent findings show that the patterns of XCI are not conserved among mammals. In this study, we used quantitative RT-PCR and RNA in situ hybridization combined with immunofluorescence to investigate the pattern of XCI during bovine embryo development. Expression of XIST (X-inactive specific transcript) RNA was significantly upregulated at the morula stage. For the first time, we demonstrate that XIST accumulation in bovine embryos starts in nuclei of female morulae, but its colocalization with histone H3 lysine 27 trimethylation was first detected in day 7 blastocysts. Both in the inner cell mass and in putative epiblast precursors, we observed a proportion of cells with XIST RNA and H3K27me3 colocalization. Surprisingly, the onset of XCI did not lead to a global downregulation of X-linked genes, even in day 9 blastocysts. Together, our findings confirm that diverse patterns of XCI initiation exist among developing mammalian embryos.


2020 ◽  
Vol 160 (6) ◽  
pp. 283-294 ◽  
Author(s):  
Paola Rebuzzini ◽  
Maurizio Zuccotti ◽  
Silvia Garagna

X dosage compensation between XX female and XY male mammalian cells is achieved by a process known as X-chromosome inactivation (XCI). XCI initiates early during preimplantation development in female cells, and it is subsequently stably maintained in somatic cells. However, XCI is a reversible process that occurs in vivo in the inner cell mass of the blastocyst, in primordial germ cells or in spermatids during reprogramming. Erasure of transcriptional gene silencing can occur though a mechanism named X-chromosome reactivation (XCR). XCI and XCR have been substantially deciphered in the mouse, whereas they still remain debated in the human. In this review, we summarized the recent advances in the knowledge of X-linked gene dosage compensation during mouse and human preimplantation development and in pluripotent stem cells.


2017 ◽  
Vol 372 (1733) ◽  
pp. 20160363 ◽  
Author(s):  
Anna Sahakyan ◽  
Kathrin Plath ◽  
Claire Rougeulle

The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


Sign in / Sign up

Export Citation Format

Share Document