scholarly journals Identification of m6A residues at single-nucleotide resolution using eCLIP and an accessible custom analysis pipeline

2020 ◽  
Author(s):  
Justin T. Roberts ◽  
Allison M. Porman ◽  
Aaron M. Johnson

AbstractMethylation at the N6 position of adenosine (m6A) is one of the most abundant RNA modifications found in eukaryotes, however accurate detection of specific m6A nucleotides within transcripts has been historically challenging due to m6A and unmodified adenosine having virtually indistinguishable chemical properties. While previous strategies such as methyl-RNA immunoprecipitation and sequencing (MeRIP-Seq) have relied on m6A-specific antibodies to isolate RNA fragments containing the modification, these methods do not allow for precise identification of individual m6A residues. More recently, modified cross-linking and immunoprecipitation (CLIP) based approaches that rely on inducing specific mutations during reverse transcription via UV crosslinking of the anti-m6A antibody to methylated RNA have been employed to overcome this limitation. However, the most utilized version of this approach, miCLIP, can be technically challenging to use for achieving high-complexity libraries. Here we present an improved methodology that yields high library complexity and allows for the straightforward identification of individual m6A residues with reliable confidence metrics. Based on enhanced CLIP (eCLIP), our m6A-eCLIP (meCLIP) approach couples the improvements of eCLIP with the inclusion of an input sample and an easy-to-use computational pipeline to allow for precise calling of m6A sites at true single nucleotide resolution. As the effort to accurately identify m6As in an efficient and straightforward way intensifies, this method is a valuable tool for investigators interested in unraveling the m6A epitranscriptome.

2020 ◽  
Author(s):  
Jia Cui ◽  
Qi Liu ◽  
Erdem Sendinc ◽  
Yang Shi ◽  
Richard I Gregory

Abstract Cellular RNAs are subject to a myriad of different chemical modifications that play important roles in controlling RNA expression and function. Dysregulation of certain RNA modifications, the so-called ‘epitranscriptome’, contributes to human disease. One limitation in studying the functional, physiological, and pathological roles of the epitranscriptome is the availability of methods for the precise mapping of individual RNA modifications throughout the transcriptome. 3-Methylcytidine (m3C) modification of certain tRNAs is well established and was also recently detected in mRNA. However, methods for the specific mapping of m3C throughout the transcriptome are lacking. Here, we developed a m3C-specific technique, Hydrazine-Aniline Cleavage sequencing (HAC-seq), to profile the m3C methylome at single-nucleotide resolution. We applied HAC-seq to analyze ribosomal RNA (rRNA)-depleted total RNAs in human cells. We found that tRNAs are the predominant m3C-modified RNA species, with 17 m3C modification sites on 11 cytoplasmic and 2 mitochondrial tRNA isoacceptors in MCF7 cells. We found no evidence for m3C-modification of mRNA or other non-coding RNAs at comparable levels to tRNAs in these cells. HAC-seq provides a novel method for the unbiased, transcriptome-wide identification of m3C RNA modification at single-nucleotide resolution, and could be widely applied to reveal the m3C methylome in different cells and tissues.


2019 ◽  
Author(s):  
Huanle Liu ◽  
Oguzhan Begik ◽  
Morghan C Lucas ◽  
Christopher E. Mason ◽  
Schraga Schwartz ◽  
...  

ABSTRACTThe field of epitranscriptomics has undergone an enormous expansion in the last few years; however, a major limitation is the lack of generic methods to map RNA modifications transcriptome-wide. Here we show that using Oxford Nanopore Technologies, N6-methyladenosine (m6A) RNA modifications can be detected with high accuracy, in the form of systematic errors and decreased base-calling qualities. Our results open new avenues to investigate the universe of RNA modifications with single nucleotide resolution, in individual RNA molecules.


2019 ◽  
Vol 36 (7) ◽  
pp. 2033-2039 ◽  
Author(s):  
Junfeng Liu ◽  
Ziyang An ◽  
Jianjun Luo ◽  
Jing Li ◽  
Feifei Li ◽  
...  

Abstract Motivation RNA 5-methylcytosine (m5C) is a type of post-transcriptional modification that may be involved in numerous biological processes and tumorigenesis. RNA m5C can be profiled at single-nucleotide resolution by high-throughput sequencing of RNA treated with bisulfite (RNA-BisSeq). However, the exploration of transcriptome-wide profile and potential function of m5C in splicing remains to be elucidated due to lack of isoform level m5C quantification tool. Results We developed a computational package to quantify Epitranscriptomal RNA m5C at the transcript isoform level (named Episo). Episo consists of three tools: mapper, quant and Bisulfitefq, for mapping, quantifying and simulating RNA-BisSeq data, respectively. The high accuracy of Episo was validated using an improved m5C-specific methylated RNA immunoprecipitation (meRIP) protocol, as well as a set of in silico experiments. By applying Episo to public human and mouse RNA-BisSeq data, we found that the RNA m5C is not evenly distributed among the transcript isoforms, implying the m5C may subject to be regulated at isoform level. Availability and implementation Episo is released under the GNU GPLv3+ license. The resource code Episo is freely accessible from https://github.com/liujunfengtop/Episo (with Tophat/cufflink) and https://github.com/liujunfengtop/Episo/tree/master/Episo_Kallisto (with Kallisto). Supplementary information Supplementary data are available at Bioinformatics online.


Open Biology ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 170077 ◽  
Author(s):  
Matthias Schaefer ◽  
Utkarsh Kapoor ◽  
Michael F. Jantsch

The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.


2018 ◽  
Vol 57 (51) ◽  
pp. 16785-16790 ◽  
Author(s):  
Virginie Marchand ◽  
Lilia Ayadi ◽  
Felix G. M. Ernst ◽  
Jasmin Hertler ◽  
Valérie Bourguignon‐Igel ◽  
...  

2018 ◽  
Author(s):  
Albertas Navickas ◽  
Sébastien Chamois ◽  
Rénette Saint-Fort ◽  
Julien Henri ◽  
Claire Torchet ◽  
...  

AbstractThe No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. We have used mRNAs expressing a 3’-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5’-hydroxylated RNA fragments requiring 5’-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.


2018 ◽  
Vol 130 (51) ◽  
pp. 17027-17032
Author(s):  
Virginie Marchand ◽  
Lilia Ayadi ◽  
Felix G. M. Ernst ◽  
Jasmin Hertler ◽  
Valérie Bourguignon‐Igel ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Albertas Navickas ◽  
Sébastien Chamois ◽  
Rénette Saint-Fort ◽  
Julien Henri ◽  
Claire Torchet ◽  
...  

AbstractThe No-Go Decay (NGD) mRNA surveillance pathway degrades mRNAs containing stacks of stalled ribosomes. Although an endoribonuclease has been proposed to initiate cleavages upstream of the stall sequence, the production of two RNA fragments resulting from a unique cleavage has never been demonstrated. Here we use mRNAs expressing a 3′-ribozyme to produce truncated transcripts in vivo to mimic naturally occurring truncated mRNAs known to trigger NGD. This technique allows us to analyse endonucleolytic cleavage events at single-nucleotide resolution starting at the third collided ribosome, which we show to be Hel2-dependent. These cleavages map precisely in the mRNA exit tunnel of the ribosome, 8 nucleotides upstream of the first P-site residue and release 5′-hydroxylated RNA fragments requiring 5′-phosphorylation prior to digestion by the exoribonuclease Xrn1, or alternatively by Dxo1. Finally, we identify the RNA kinase Trl1, alias Rlg1, as an essential player in the degradation of NGD RNAs.


Sign in / Sign up

Export Citation Format

Share Document