exit tunnel
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 85)

H-INDEX

38
(FIVE YEARS 7)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Marc Joiret ◽  
Frederic Kerff ◽  
Francesca Rapino ◽  
Pierre Close ◽  
Liesbet Geris

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Jia ◽  
Tianlong Wang ◽  
Jean Lehmann

AbstractPeptide bond formation on the ribosome requires that aminoacyl-tRNAs and peptidyl-tRNAs are properly positioned on the A site and the P site of the peptidyl transferase center (PTC) so that nucleophilic attack can occur. Here we analyse some constraints associated with the induced-fit mechanism of the PTC, that promotes this positioning through a compaction around the aminoacyl ester orchestrated by U2506. The physical basis of PTC decompaction, that allows the elongated peptidyl-tRNA to free itself from that state and move to the P site of the PTC, is still unclear. From thermodynamics considerations and an analysis of published ribosome structures, the present work highlights the rational of this mechanism, in which the free-energy released by the new peptide bond is used to kick U2506 away from the reaction center. Furthermore, we show the evidence that decompaction is impaired when the nascent peptide is not yet anchored inside the exit tunnel, which may contribute to explain why the first rounds of elongation are inefficient, an issue that has attracted much interest for about two decades. Results in this field are examined in the light of the present analysis and a physico-chemical correlation in the genetic code, which suggest that elementary constraints associated with the size of the side-chain of the amino acids penalize early elongation events.


2021 ◽  
Vol 28 (12) ◽  
pp. 997-1008
Author(s):  
Agata D. Misiaszek ◽  
Mathias Girbig ◽  
Helga Grötsch ◽  
Florence Baudin ◽  
Brice Murciano ◽  
...  

AbstractRNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena A. K. Bögeholz ◽  
Evan Mercier ◽  
Wolfgang Wintermeyer ◽  
Marina V. Rodnina

AbstractSynthesis of bacterial proteins on the ribosome starts with a formylated methionine. Removal of the N-terminal formyl group is essential and is carried out by peptide deformylase (PDF). Deformylation occurs co-translationally, shortly after the nascent-chain emerges from the ribosomal exit tunnel, and is necessary to allow for further N-terminal processing. Here we describe the kinetic mechanism of deformylation by PDF of ribosome-bound nascent-chains and show that PDF binding to and dissociation from ribosomes is rapid, allowing for efficient scanning of formylated substrates in the cell. The rate-limiting step in the PDF mechanism is a conformational rearrangement of the nascent-chain that takes place after cleavage of the formyl group. Under conditions of ongoing translation, the nascent-chain is deformylated rapidly as soon as it becomes accessible to PDF. Following deformylation, the enzyme is slow in releasing the deformylated nascent-chain, thereby delaying further processing and potentially acting as an early chaperone that protects short nascent chains before they reach a length sufficient to recruit other protein biogenesis factors.


2021 ◽  
Author(s):  
Corentin R. Fostier ◽  
Farès Ousalem ◽  
Elodie Carmen Leroy ◽  
Saravuth Ngo ◽  
Heddy Soufari ◽  
...  

Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors currently proliferating among human pathogens that provide resistance against clinically important ribosome-targeting antibiotics. Here, we combine genetic and structural approaches to determine the activity of the streptococcal ARE ABC-F protein MsrD on the ribosome and its regulation in response to macrolide exposure. We show that cladinose-containing macrolides lead to insertion of MsrDL leader peptide into a conserved crevice of the ribosomal exit tunnel, which remained thus far undocumented, concomitantly with 23S rRNA rearrangements that preclude proper accommodation of release factors and inhibits termination. The stalled ribosome obstructs formation of a Rho-independent terminator which prevents msrD transcriptional attenuation. This stalled ribosome is rescued by MsrD powered by its two functionally asymmetric ATPase sites, but not by MsrD mutants which do not provide antibiotic resistance, showing evidence of equivalence between MsrD function in antibiotic resistance and its action on this complex.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6980
Author(s):  
Pranab K. Bhadra ◽  
Rachael N. Magwaza ◽  
Niroshini Nirmalan ◽  
Sally Freeman ◽  
Jill Barber ◽  
...  

Erythromycin A is an established anti-bacterial agent against Gram-positive bacteria, but it is unstable to acid. This led to an evaluation of erythromycin B and its derivatives because these have improved acid stability. These compounds were investigated for their anti-malarial activities, by their in silico molecular docking into segments of the exit tunnel of the apicoplast ribosome from Plasmodium falciparum. This is believed to be the target of the erythromycin A derivative, azithromycin, which has mild anti-malarial activity. The erythromycin B derivatives were evaluated on the multi-drug (chloroquine, pyrimethamine, and sulfadoxine)-resistant strain K1 of P. falciparum for asexual growth inhibition on asynchronous culture. The erythromycin B derivatives were identified as active in vitro inhibitors of asexual growth of P. falciparum with low micro-molar IC50 values after a 72 h cycle. 5-Desosaminyl erythronolide B ethyl succinate showed low IC50 of 68.6 µM, d-erythromycin B 86.8 µM, and erythromycin B 9-oxime 146.0 µM on the multi-drug-resistant K1 of P. falciparum. Based on the molecular docking, it seems that a small number of favourable interactions or the presence of unfavourable interactions of investigated derivatives of erythromycin B with in silico constructed segment from the exit tunnel from the apicoplast of P. falciparum is the reason for their weak in vitro anti-malarial activities.


2021 ◽  
Author(s):  
Katrin Friederike Leesch ◽  
Laura Lorenzo-Orts ◽  
Carina Pribitzer ◽  
Irina Grishkovskaya ◽  
Manuel Matzinger ◽  
...  

Ribosomes are produced in large quantities during oogenesis and stored in the egg. However, the egg and early embryo are translationally repressed. Using mass-spectrometry and cryo-EM analyses of ribosomes isolated from zebrafish and Xenopus eggs and embryos, we provide molecular evidence that ribosomes transition from a dormant to an active state during the first hours of embryogenesis. Dormant ribosomes are associated with four conserved factors that form two modules and occupy functionally important sites of the ribosome: a Habp4-eEF2 module that stabilizes ribosome levels and a Dap1b/Dapl1-eIF5a module that represses translation. Dap1b/Dapl1 is a newly discovered translational inhibitor that stably inserts into the polypeptide exit tunnel. Thus, a developmentally programmed, conserved ribosome state plays a key role in ribosome storage and translational repression in the egg.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Valeria Guzman-Luna ◽  
Andrew M. Fuchs ◽  
Anna J. Allen ◽  
Alexios Staikos ◽  
Silvia Cavagnero

AbstractThe influence of the ribosome on nascent chains is poorly understood, especially in the case of proteins devoid of signal or arrest sequences. Here, we provide explicit evidence for the interaction of specific ribosomal proteins with ribosome-bound nascent chains (RNCs). We target RNCs pertaining to the intrinsically disordered protein PIR and a number of mutants bearing a variable net charge. All the constructs analyzed in this work lack N-terminal signal sequences. By a combination chemical crosslinking and Western-blotting, we find that all RNCs interact with ribosomal protein L23 and that longer nascent chains also weakly interact with L29. The interacting proteins are spatially clustered on a specific region of the large ribosomal subunit, close to the exit tunnel. Based on chain-length-dependence and mutational studies, we find that the interactions with L23 persist despite drastic variations in RNC sequence. Importantly, we also find that the interactions are highly Mg+2-concentration-dependent. This work is significant because it unravels a novel role of the ribosome, which is shown to engage with the nascent protein chain even in the absence of signal or arrest sequences.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haifeng Hou ◽  
Yan Li ◽  
Mo Wang ◽  
Aijun Liu ◽  
Zishuo Yu ◽  
...  

AbstractTermination of the RNA polymerase III (Pol III)-mediated transcription requires the conversion of an elongation complex (EC) to a pre-termination complex (PTC) on poly-deoxythymidine (dT)-containing non-template strand, a mechanism distinct from Pol I and Pol II. Here, our in vitro transcription elongation assay showed that 5-7 dT-containing DNA template led to transcription termination of Pol III, but not Pol I or Pol II. We assembled human Pol III PTC on a 7 dT-containing DNA template and determined the structure at 3.6 Å resolution. The structure reveals that poly-dT are trapped in a narrow exit tunnel formed by RPC2. A hydrophobic gate of the exit tunnel separates the bases of two connected deoxythymidines and may prevent translocation of the non-template strand. The fork loop 2 stabilizes both template and non-template strands around the transcription fork, and may further prevent strand translocation. Our study shows that the Pol III-specific exit tunnel and FL2 allow for efficient translocation of non-poly-dT sequence during transcription elongation but trap poly-dT to promote DNA retention of Pol III, revealing molecular mechanism of poly-dT-dependent transcription termination of Pol III.


2021 ◽  
Author(s):  
Yuhei Chadani ◽  
Nobuyuki Sugata ◽  
Tatsuya Niwa ◽  
Yosuke Ito ◽  
Shintaro Iwasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document