scholarly journals Synaptic transmission induces site-specific changes in sialylation on N-linked glycoproteins in rat nerve terminals

2020 ◽  
Author(s):  
Inga Boll ◽  
Pia Jensen ◽  
Veit Schwämmle ◽  
Martin R. Larsen

AbstractSynaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show a novel potential modulator of synaptic transmission, sialylation of N-linked glycosylation. The negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after five seconds depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.

2020 ◽  
Vol 19 (9) ◽  
pp. 1418-1435
Author(s):  
Inga Boll ◽  
Pia Jensen ◽  
Veit Schwämmle ◽  
Martin R. Larsen

Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.


2005 ◽  
Vol 25 (7) ◽  
pp. 2846-2852 ◽  
Author(s):  
Jens Behrends ◽  
Serge Clément ◽  
Bernard Pajak ◽  
Viviane Pohl ◽  
Carine Maenhaut ◽  
...  

ABSTRACT Rhophilin 2 is a Rho GTPase binding protein initially isolated by differential screening of a chronically thyrotropin (TSH)-stimulated dog thyroid cDNA library. In thyroid cell culture, expression of rhophilin 2 mRNA and protein is enhanced following TSH stimulation of the cyclic AMP (cAMP) transduction cascade. Yeast two-hybrid screening and coimmunoprecipitation have revealed that the GTP-bound form of RhoB and components of the cytoskeleton are protein partners of rhophilin 2. These results led us to suggest that rhophilin 2 could play an important role downstream of RhoB in the control of endocytosis during the thyroid secretory process which follows stimulation of the TSH/cAMP pathway. To validate this hypothesis, we generated rhophilin 2-deficient mice and analyzed their thyroid structure and function. Mice lacking rhophilin 2 develop normally, have normal life spans, and are fertile. They have no visible goiter and no obvious clinical signs of hyper- or hypothyroidism. The morphology of thyroid cells and follicles in these mice were normal, as were the different biological tests performed to investigate thyroid function. Our results indicate that rhophilin 2 does not play an essential role in thyroid physiology.


2005 ◽  
Vol 62 (6) ◽  
pp. 1254-1270 ◽  
Author(s):  
John C Brazner ◽  
Danny K Tanner ◽  
Naomi E Detenbeck ◽  
Sharon L Batterman ◽  
Stacey L Stark ◽  
...  

The relative importance of regional, watershed, and in-stream environmental factors on fish assemblage structure and function was investigated in western Lake Superior tributaries. We selected 48 second- and third-order watersheds from two hydrogeomorphic regions to examine fish assemblage response to differences in forest fragmentation, watershed storage, and a number of other watershed, riparian, and in-stream habitat conditions. Although a variety of regional, fragmentation, and storage-related factors had significant influences on the fish assemblages, water temperature appeared to be the single most important environmental factor. We found lower water temperatures and trout–sculpin assemblages at lower fragmentation sites and higher temperatures and minnow–sucker–darter assemblages as storage increased. Factors related to riparian shading and flow separated brook trout streams from brown trout (Salmo trutta) – rainbow trout (Oncorhynchus mykiss) streams. Functionally, fish assemblages at lower fragmentation sites were dominated by cold-water fishes that had low silt tolerance and preferred moderate current speeds, while fishes with higher silt tolerances, warmer temperature preferences, and weaker sustained swimming capabilities were most common at higher storage sites. Our results suggest that site-specific environmental conditions are highly dependent on regional- and watershed-scale characters and that a combination of these factors operates in concert to influence the structure and function of stream fish assemblages.


1990 ◽  
Vol 258 (3) ◽  
pp. F636-F642 ◽  
Author(s):  
F. A. Gesek ◽  
J. W. Strandhoy

In the kidney, the proximal nephron is a major site for Na+ reabsorption and H+ secretion. An electroneutral exchanger mediates the uptake of luminal Na+ with the secretion of cellular H+. In these studies, alpha-adrenoceptor-stimulated influx of 22Na+ into rat proximal tubules through the Na(+)-H+ exchanger was examined. The activity of this exchanger was defined as the component of 22Na+ uptake sensitive to inhibition by ethylisopropyl amiloride (EIPA) and was observed to be increased by both alpha 1- and alpha 2-adrenoceptor agonists as well as by phorbol 12-myristate 13-acetate (PMA). Selective alpha 2-adrenoceptor agonists produced a range of stimulation of EIPA-suppressible 22Na+ uptake: from a 72% increase above control with guanabenz to a 253% increase with B-HT 933. Because heterogeneity of alpha 2-adrenoceptor structure and function has been postulated, we examined whether the effects of alpha 2-adrenoceptors were sensitive to pertussis toxin. the responses to alpha 1-adrenoceptor agonists and PMA were unaffected, but the stimulation of Na(+)-H+ exchange by each of the selective alpha 2-adrenoceptor agonists tested was blocked. When Na(+)-H+ exchange was increased directly by PMA acting on protein kinase C, guanabenz but not B-HT 933 inhibited the response. The results indicated that the alpha 2-adrenoceptor agonists stimulated 22Na+ influx by activating a pertussis toxin-sensitive pathway but that certain alpha 2-adrenergic agonists such as guanabenz could additionally inhibit the exchanger through a pertussis toxin-resistant mechanism. This inhibition by guanabenz could be reversed by selective alpha 2-adrenoceptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)


Metallomics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1735-1747
Author(s):  
Louisa Loviscach ◽  
Tobias M. Backes ◽  
Daniel S. Langfermann ◽  
Myriam Ulrich ◽  
Gerald Thiel

Zinc, a trace element, is necessary for the correct structure and function of many proteins.


1999 ◽  
Vol 46 (2) ◽  
pp. 377-389 ◽  
Author(s):  
W Filipowicz ◽  
P Pelczar ◽  
V Pogacic ◽  
F Dragon

Maturation of pre-ribosomal RNA (pre-rRNA) in eukaryotic cells takes place in the nucleolus and involves a large number of cleavage events, which frequently follow alternative pathways. In addition, rRNAs are extensively modified, with the methylation of the 2'-hydroxyl group of sugar residues and conversion of uridines to pseudouridines being the most frequent modifications. Both cleavage and modification reactions of pre-rRNAs are assisted by a variety of small nucleolar RNAs (snoRNAs), which function in the form of ribonucleoprotein particles (snoRNPs). The majority of snoRNAs acts as guides directing site-specific 2'-O-ribose methylation or pseudouridine formation. Over one hundred RNAs of this type have been identified to date in vertebrates and the yeast Saccharomyces cerevisiae. This number is readily explained by the findings that one snoRNA acts as a guide usually for one or at most two modifications, and human rRNAs contain 91 pseudouridines and 106 2'-O-methyl residues. In this article we review information about the biogenesis, structure and function of guide snoRNAs.


Sign in / Sign up

Export Citation Format

Share Document