scholarly journals Optogenetic stimulation of the basolateral amygdala-medial entorhinal cortex pathway after spatial training has sex-specific effects on downstream activity-regulated cytoskeletal-associated protein expression

2020 ◽  
Author(s):  
Krista L. Wahlstrom ◽  
Amanda Alvarez-Dieppa ◽  
Christa K. McIntyre ◽  
Ryan T. LaLumiere

AbstractPrevious work from our laboratory suggests that projections from the basolateral amygdala (BLA) to the medial entorhinal cortex (mEC) are a critical pathway by which the BLA modulates the consolidation of spatial learning. Posttraining optogenetic stimulation of this pathway enhances retention of spatial memories. Evidence also indicates that intra-BLA administration of memory-enhancing drugs increases protein levels of activity-regulated cytoskeletal-associated protein (ARC) in the dorsal hippocampus (DH) and that blocking ARC in the DH impairs spatial memory consolidation. Yet, whether optical manipulations of the BLA-mEC pathway after spatial training also alter ARC in the DH is unknown. To address this question, male and female Sprague-Dawley rats received optogenetic stimulation of the BLA-mEC pathway immediately after spatial training using a Barnes maze and, 45 min later, were sacrificed for ARC analysis. Initial experiments found that spatial training increased ARC levels in the DH of rats above those observed in control rats and rats that underwent a cued-response version of the task. Optogenetic stimulation of the BLA-mEC pathway following spatial training, using parameters effective at enhancing spatial memory consolidation, enhanced ARC protein levels in the DH of male rats without affecting ARC levels in the dorsolateral striatum (DLS) or somatosensory cortex. In contrast, similar optical stimulation decreased ARC protein levels in the DLS of female rats without altering ARC in the DH or somatosensory cortex. Together, the present findings suggest a mechanism by which BLA-mEC stimulation enhances spatial memory consolidation in rats and reveals a possible sex-difference in this mechanism.

2021 ◽  
Author(s):  
Sau Yee Tsoi ◽  
Merve Öncül ◽  
Ella Svahn ◽  
Mark Robertson ◽  
Zuzanna Bogdanowicz ◽  
...  

AbstractStandard models for memory storage assume that signals reach the hippocampus from superficial layers of the entorhinal cortex (EC) and are returned to the telencephalon by projections from deep layers of the EC. Here we show that telencephalon-projecting cells in Layer 5a of the medial EC send a copy of their outputs back to the CA1 region of the hippocampus. Our results suggest that rather than serving as a relay, deep EC may coordinate hippocampal-neocortical interactions in memory consolidation.


2020 ◽  
Author(s):  
Behroo Mirza Agha ◽  
Roya Akbary ◽  
Arashk Ghasroddashti ◽  
Mojtaba Nazari-Ahangarkolaee ◽  
Ian Q. Whishaw ◽  
...  

AbstractA network of cholinergic neurons in the basal forebrain innerve the forebrain and are proposed to contribute to a variety of functions including attention, and cortical plasticity. This study examined the contribution of the nucleus basalis cholinergic projection to the sensorimotor cortex on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region of the somatosensory cortex. Mice were trained to perform a single-pellet skilled reaching task and their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-frame by video analysis with end point, movement and sensorimotor integration measures. Somatosensory forelimb lesions produced impairments in endpoint and movement component measures of reaching and increased the incidence of fictive eating, a sensory impairment in mistaking a missed reach for a successful reach. Upregulated acetylcholine (ACh) release, as measured by local field potential recording, elicited via optogenetic stimulation of the nucleus basalis improved recovery of reaching and improved movement scores but did not affect a sensorimotor integration impairment poststroke. The results show that the mouse cortical forelimb somatosensory region contributes to forelimb motor behavior and suggest that ACh upregulation could serve as an adjunct to behavioral therapy for the acute treatment of stroke.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillaume Etter ◽  
Suzanne van der Veldt ◽  
Frédéric Manseau ◽  
Iman Zarrinkoub ◽  
Emilie Trillaud-Doppia ◽  
...  

AbstractSlow gamma oscillations (30–60 Hz) correlate with retrieval of spatial memory. Altered slow gamma oscillations have been observed in Alzheimer’s disease. Here, we use the J20-APP AD mouse model that displays spatial memory loss as well as reduced slow gamma amplitude and phase-amplitude coupling to theta oscillations phase. To restore gamma oscillations in the hippocampus, we used optogenetics to activate medial septal parvalbumin neurons at different frequencies. We show that optogenetic stimulation of parvalbumin neurons at 40 Hz (but not 80 Hz) restores hippocampal slow gamma oscillations amplitude, and phase-amplitude coupling of the J20 AD mouse model. Restoration of slow gamma oscillations during retrieval rescued spatial memory in mice despite significant plaque deposition. These results support the role of slow gamma oscillations in memory and suggest that optogenetic stimulation of medial septal parvalbumin neurons at 40 Hz could provide a novel strategy for treating memory deficits in AD.


Science ◽  
2019 ◽  
Vol 363 (6434) ◽  
pp. 1447-1452 ◽  
Author(s):  
William N. Butler ◽  
Kiah Hardcastle ◽  
Lisa M. Giocomo

Ethologically relevant navigational strategies often incorporate remembered reward locations. Although neurons in the medial entorhinal cortex provide a maplike representation of the external spatial world, whether this map integrates information regarding learned reward locations remains unknown. We compared entorhinal coding in rats during a free-foraging task and a spatial memory task. Entorhinal spatial maps restructured to incorporate a learned reward location, which in turn improved positional decoding near this location. This finding indicates that different navigational strategies drive the emergence of discrete entorhinal maps of space and points to a role for entorhinal codes in a diverse range of navigational behaviors.


Neuroreport ◽  
2016 ◽  
Vol 27 (6) ◽  
pp. 462-468 ◽  
Author(s):  
Chun-Jen Hsiao ◽  
Ching-Lung Lin ◽  
Tian-Yu Lin ◽  
Sheue-Er Wang ◽  
Chung-Hsin Wu

2018 ◽  
Vol 38 (11) ◽  
pp. 2698-2712 ◽  
Author(s):  
Krista L. Wahlstrom ◽  
Mary L. Huff ◽  
Eric B. Emmons ◽  
John H. Freeman ◽  
Nandakumar S. Narayanan ◽  
...  

2011 ◽  
Vol 31 (38) ◽  
pp. 13469-13484 ◽  
Author(s):  
S. S. D. Stone ◽  
C. M. Teixeira ◽  
L. M. DeVito ◽  
K. Zaslavsky ◽  
S. A. Josselyn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document