Faculty Opinions recommendation of Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory.

Author(s):  
Serge Laroche ◽  
Alexandra Veyrac
2011 ◽  
Vol 31 (38) ◽  
pp. 13469-13484 ◽  
Author(s):  
S. S. D. Stone ◽  
C. M. Teixeira ◽  
L. M. DeVito ◽  
K. Zaslavsky ◽  
S. A. Josselyn ◽  
...  

2020 ◽  
Author(s):  
Krista L. Wahlstrom ◽  
Amanda Alvarez-Dieppa ◽  
Christa K. McIntyre ◽  
Ryan T. LaLumiere

AbstractPrevious work from our laboratory suggests that projections from the basolateral amygdala (BLA) to the medial entorhinal cortex (mEC) are a critical pathway by which the BLA modulates the consolidation of spatial learning. Posttraining optogenetic stimulation of this pathway enhances retention of spatial memories. Evidence also indicates that intra-BLA administration of memory-enhancing drugs increases protein levels of activity-regulated cytoskeletal-associated protein (ARC) in the dorsal hippocampus (DH) and that blocking ARC in the DH impairs spatial memory consolidation. Yet, whether optical manipulations of the BLA-mEC pathway after spatial training also alter ARC in the DH is unknown. To address this question, male and female Sprague-Dawley rats received optogenetic stimulation of the BLA-mEC pathway immediately after spatial training using a Barnes maze and, 45 min later, were sacrificed for ARC analysis. Initial experiments found that spatial training increased ARC levels in the DH of rats above those observed in control rats and rats that underwent a cued-response version of the task. Optogenetic stimulation of the BLA-mEC pathway following spatial training, using parameters effective at enhancing spatial memory consolidation, enhanced ARC protein levels in the DH of male rats without affecting ARC levels in the dorsolateral striatum (DLS) or somatosensory cortex. In contrast, similar optical stimulation decreased ARC protein levels in the DLS of female rats without altering ARC in the DH or somatosensory cortex. Together, the present findings suggest a mechanism by which BLA-mEC stimulation enhances spatial memory consolidation in rats and reveals a possible sex-difference in this mechanism.


2000 ◽  
Vol 884 (1-2) ◽  
pp. 35-50 ◽  
Author(s):  
John Gigg ◽  
David M. Finch ◽  
Shane M. O’Mara

Brain ◽  
2015 ◽  
Vol 138 (7) ◽  
pp. 1833-1842 ◽  
Author(s):  
Jonathan P. Miller ◽  
Jennifer A. Sweet ◽  
Christopher M. Bailey ◽  
Charles N. Munyon ◽  
Hans O. Luders ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guillaume Etter ◽  
Suzanne van der Veldt ◽  
Frédéric Manseau ◽  
Iman Zarrinkoub ◽  
Emilie Trillaud-Doppia ◽  
...  

AbstractSlow gamma oscillations (30–60 Hz) correlate with retrieval of spatial memory. Altered slow gamma oscillations have been observed in Alzheimer’s disease. Here, we use the J20-APP AD mouse model that displays spatial memory loss as well as reduced slow gamma amplitude and phase-amplitude coupling to theta oscillations phase. To restore gamma oscillations in the hippocampus, we used optogenetics to activate medial septal parvalbumin neurons at different frequencies. We show that optogenetic stimulation of parvalbumin neurons at 40 Hz (but not 80 Hz) restores hippocampal slow gamma oscillations amplitude, and phase-amplitude coupling of the J20 AD mouse model. Restoration of slow gamma oscillations during retrieval rescued spatial memory in mice despite significant plaque deposition. These results support the role of slow gamma oscillations in memory and suggest that optogenetic stimulation of medial septal parvalbumin neurons at 40 Hz could provide a novel strategy for treating memory deficits in AD.


Sign in / Sign up

Export Citation Format

Share Document