scholarly journals Synchronization of human retinal pigment ephitilial-1 (RPE-1) cells in mitosis

2020 ◽  
Author(s):  
Stacey J. Scott ◽  
Kethan Suvarna ◽  
Pier Paolo D’Avino

ABSTRACTHuman retinal pigment ephitilial-1 (RPE-1) cells are increasingly being used as a model to study mitosis because they represent a non-transformed alternative to cancer cell lines, such as HeLa cervical adenocarcinoma cells. However, the lack of an efficient method to synchronize RPE-1 cells in mitosis precludes their application for large-scale biochemical and proteomics assays. Here we report a protocol to synchronize RPE-1 cells based on sequential treatments with the Cdk4/6 inhibitor PD 0332991 (palbociclib) and the microtubule depolymerizing drug nocodazole. With this method, the vast majority (80-90%) of RPE-1 cells arrested at prometaphase and exited mitosis synchronously after release from nocodazole. Furthermore, we show that this protocol could be successfully employed for the characterization of the protein-protein interaction network of the kinetochore protein Ndc80 by immunoprecipitation coupled with mass spectrometry. This synchronization method significantly expands the versatility and applicability of RPE-1 cells to the study of cell division and might be applied to other cell lines that do not respond to treatments with DNA synthesis inhibitors.

2020 ◽  
Vol 133 (18) ◽  
pp. jcs247940
Author(s):  
Stacey J. Scott ◽  
Kethan S. Suvarna ◽  
Pier Paolo D'Avino

ABSTRACTHuman retinal pigment epithelial-1 (RPE-1) cells are increasingly being used as a model to study mitosis because they represent a non-transformed alternative to cancer cell lines, such as HeLa cervical adenocarcinoma cells. However, the lack of an efficient method to synchronize RPE-1 cells in mitosis precludes their application for large-scale biochemical and proteomics assays. Here, we report a protocol to synchronize RPE-1 cells based on sequential treatments with the Cdk4 and Cdk6 inhibitor PD 0332991 (palbociclib) and the microtubule-depolymerizing drug nocodazole. With this method, the vast majority (80–90%) of RPE-1 cells arrested at prometaphase and exited mitosis synchronously after release from nocodazole. Moreover, the cells fully recovered and re-entered the cell cycle after the palbociclib–nocodazole block. Finally, we show that this protocol could be successfully employed for the characterization of the protein–protein interaction network of the kinetochore protein Ndc80 by immunoprecipitation coupled with mass spectrometry. This synchronization method significantly expands the versatility and applicability of RPE-1 cells to the study of cell division and might be applied to other cell lines that do not respond to treatments with DNA synthesis inhibitors.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


2016 ◽  
Author(s):  
T Li ◽  
R Wernersson ◽  
RB Hansen ◽  
H Horn ◽  
JM Mercer ◽  
...  

Human protein-protein interaction networks are critical to understanding cell biology and interpreting genetic and genomic data, but are challenging to produce in individual large-scale experiments. We describe a general computational framework that through data integration and quality control provides a scored human protein-protein interaction network (InWeb_IM). Juxtaposed with five comparable resources, InWeb_IM has 2.8 times more interactions (~585K) and a superior functional signal showing that the added interactions reflect real cellular biology. InWeb_IM is a versatile resource for accurate and cost-efficient functional interpretation of massive genomic datasets illustrated by annotating candidate genes from >4,700 cancer genomes and genes involved in neuropsychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document