scholarly journals Impacts of host phylogeny, feeding styles, and parasite attachment site on isotopic discrimination in helminths infecting coral reef fish hosts

2020 ◽  
Author(s):  
Philip M. Riekenberg ◽  
Marine J. Briand ◽  
Thibaud Moléana ◽  
Pierre Sasal ◽  
Marcel van der Meer ◽  
...  

AbstractStable isotopes of carbon and nitrogen characterize trophic relationships in predator-prey relationships, with clear differences between consumer and diet (discrimination factor, Δ13C, Δ15N). However, parasite-host isotopic relationships remain unclear, with Δ13C and Δ15N remaining incompletely characterized, especially for helminths. In this study, we used stable isotopes to determine discrimination factors for 13 parasite-host pairings of helminths in coral reef fish. Δ15N differences grouped according to phylogeny and attachment site on the hosts: Δ15N was positive for trematodes and nematodes from the digestive tract and varied for cestodes and nematodes from the general cavity. Δ13C showed more complex patterns with no effect of phylogeny or attachment site. A negative relationship was observed between Δ15N and host δ15N value among different host-parasite pairings as well as within 7 out of the 13 parings, indicating that host metabolic processing affects host-parasite discrimination values. In contrast, no relationships were observed for Δ13C. Our results indicate that host phylogeny, attachment site and host stable isotope value drive Δ15N of helminths in coral reef fish while Δ13C is more idiosyncratic. These results call for use of taxon- or species-specific and scaled framework for bulk stable isotopes in the trophic ecology of parasites.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip M. Riekenberg ◽  
Marine J. Briand ◽  
Thibaud Moléana ◽  
Pierre Sasal ◽  
Marcel T. J. van der Meer ◽  
...  

AbstractStable isotopes of carbon and nitrogen characterize trophic relationships in predator–prey relationships, with clear differences between consumer and diet (discrimination factor Δ13C and Δ15N). However, parasite–host isotopic relationships remain unclear, with Δ13C and Δ15N remaining incompletely characterized, especially for helminths. In this study, we used stable isotopes to determine discrimination factors for 13 parasite–host pairings of helminths in coral reef fish. Differences in Δ15N values grouped according to parasite groups and habitat within the host with positive Δ15N values observed for trematodes and nematodes from the digestive tract and variable Δ15N values observed for cestodes and nematodes from the general cavity. Furthermore, Δ13C values showed more complex patterns with no effect of parasite group or habitat within host. A negative relationship was observed between Δ15N and host δ15N values among different host-parasite pairings as well as within 7 out of the 13 pairings, indicating that host metabolic processing affects host-parasite discrimination values. In contrast, no relationships were observed for Δ13C values. Our results indicate that parasite group, habitat within host, and host stable isotope value drive Δ15N of helminths in coral reef fish while their effect on Δ13C is more idiosyncratic. These results call for use of taxon- or species-specific and scaled framework for bulk stable isotopes in the trophic ecology of parasites.


2018 ◽  
Vol 27 (24) ◽  
pp. 5004-5018 ◽  
Author(s):  
Laura Gajdzik ◽  
Giacomo Bernardi ◽  
Gilles Lepoint ◽  
Bruno Frédérich

Zootaxa ◽  
2010 ◽  
Vol 2691 (1) ◽  
pp. 1 ◽  
Author(s):  
JEAN-LOU JUSTINE ◽  
IAN BEVERIDGE ◽  
GEOFFREY A. BOXSHALL ◽  
ROD A. BRAY ◽  
FRANTIŠEK MORAVEC ◽  
...  

Parasites were collected from 17 species of emperors and emperor bream (Lethrinidae) in the waters off New Caledonia, South Pacific. Host-parasite and parasite-hosts lists are provided, with a total of 188 host-parasite combinations (11 per fish species), including 81 identifications at the species level. A total of 52 parasites were identified at the species level, and 40 new host records were found. Results are presented for larval isopods, copepods (16 species), monogeneans (24), digeneans (27), cestodes (11) and nematodes (10). When results were restricted to the four best-sampled fish species for which more than 30 specimens were examined, the number of host-parasite combinations was 22.25 per fish species, and the number of parasite taxa identified at the species level was 9.5 per fish species. From these data, the total number of metazoan parasite species predicted from all lethrinid species of New Caledonia, based on a classification of fish sizes using length in three categories, is 340, i.e. 13 per fish species. A biogeographical comparison with Heron Island on the Great Barrier Reef (Queensland, Australia) was possible only for a single fish species, Lethrinus miniatus: in a total of 65 host-parasite combinations, only five taxa identified at the species level (three monogeneans and two digeneans) were shared at both localities. Parasite biodiversity in lethrinids was of similar magnitude to that in groupers (Serranidae Epinephelinae) in the same area, and this study confirms a previous prediction of 10 parasite species per coral reef fish species. Although this study required significant sampling and identification, we estimate that only 13% of the parasites of lethrinids are known in New Caledonia.


Microbiome ◽  
2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Marlène Chiarello ◽  
Jean-Christophe Auguet ◽  
Yvan Bettarel ◽  
Corinne Bouvier ◽  
Thomas Claverie ◽  
...  

2003 ◽  
Vol 30 (2) ◽  
pp. 200-208 ◽  
Author(s):  
N.A.J. Graham ◽  
R.D. Evans ◽  
G.R. Russ

What are the effects of no-take marine reserves on trophic relationships of coral reef fish? Previous studies often have lacked detailed dietary information on major predators, and have often been confounded by differences in habitat complexity between reserve and fished sites. This study investigates the effects of marine reserve protection on predator-prey interactions of coral reef fish on the inshore islands of the Great Barrier Reef (GBR). The abundance of species of prey fish of Plectropomus leopardus (Serranidae), a piscivore and the major target of the hook and line fisheries on the GBR, were estimated in protected and fished zones. These prey species were identified from previous detailed studies of the diet of P. leopardus. Fish populations and habitat characteristics were surveyed by underwater visual census. Previous studies had determined that the biomass of P. leopardus was 3–4 times higher in protected than fished zones in the Whitsunday and Palm Islands, central GBR, after 14 years of protection. Eight of the nine prey species had a higher density within fished zones than protected zones, six significantly so. The density of all prey fish was twice that in the fished than the protected zone (p < 0.001). There were no significant differences in availability of different sized refuge holes, structural complexity or live coral cover between zones. Thus, important attributes of habitat complexity did not confound the comparisons between reserve and fished zones. Finally, a significant negative correlation (r = 0.46) between coral trout biomass and summed prey fish biomass suggested that predation may be an important structuring process in this system. The results have implications for the conservation of fishery targets and their prey. The study highlights the potential ecosystem implications of the use of no-take marine reserves as conservation and fisheries management tools.


Sign in / Sign up

Export Citation Format

Share Document