scholarly journals Topography of speech-related acoustic and phonological feature encoding throughout the human core and parabelt auditory cortex

Author(s):  
Liberty S. Hamilton ◽  
Yulia Oganian ◽  
Edward F. Chang

AbstractSpeech perception involves the extraction of acoustic and phonological features from the speech signal. How those features map out across the human auditory cortex is unknown. Complementary to noninvasive imaging, the high spatial and temporal resolution of intracranial recordings has greatly contributed to recent advances in our understanding. However, these approaches are typically limited by piecemeal sampling of the expansive human temporal lobe auditory cortex. Here, we present a functional characterization of local cortical encoding throughout all major regions of the primary and non-primary human auditory cortex. We overcame previous limitations by using rare direct recordings from the surface of the temporal plane after surgical microdissection of the deep Sylvian fissure between the frontal and temporal lobes. We recorded neural responses using simultaneous high-density direct recordings over the left temporal plane and the lateral superior temporal gyrus, while participants listened to natural speech sentences and pure tone stimuli. We found an anatomical separation of simple spectral feature tuning, including tuning for pure tones and absolute pitch, on the superior surface of the temporal plane, and complex tuning for phonological features, relative pitch and speech amplitude modulations on lateral STG. Broadband onset responses are unique to posterior STG and not found elsewhere in auditory cortices. This onset region is functionally distinct from the rest of STG, with latencies similar to primary auditory areas. These findings reveal a new, detailed functional organization of response selectivity to acoustic and phonological features in speech throughout the human auditory cortex.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taishi Hosaka ◽  
Marino Kimura ◽  
Yuko Yotsumoto

AbstractWe have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one’s own voice. In the experiments, we modified the subjects’ own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.


2002 ◽  
Vol 88 (1) ◽  
pp. 540-543 ◽  
Author(s):  
John J. Foxe ◽  
Glenn R. Wylie ◽  
Antigona Martinez ◽  
Charles E. Schroeder ◽  
Daniel C. Javitt ◽  
...  

Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory.


2018 ◽  
Author(s):  
Anna Dora Manca ◽  
Francesco Di Russo ◽  
Francesco Sigona ◽  
Mirko Grimaldi

How the brain encodes the speech acoustic signal into phonological representations (distinctive features) is a fundamental question for the neurobiology of language. Whether this process is characterized by tonotopic maps in primary or secondary auditory areas, with bilateral or leftward activity, remains a long-standing challenge. Magnetoencephalographic and ECoG studies have previously failed to show hierarchical and asymmetric hints for speech processing. We employed high-density electroencephalography to map the Salento Italian vowel system onto cortical sources using the N1 auditory evoked component. We found evidence that the N1 is characterized by hierarchical and asymmetric indexes structuring vowels representation. We identified them with two N1 subcomponents: the typical N1 (N1a) peaking at 125-135 ms and localized in the primary auditory cortex bilaterally with a tangential distribution and a late phase of the N1 (N1b) peaking at 145-155 ms and localized in the left superior temporal gyrus with a radial distribution. Notably, we showed that the processing of distinctive feature representations begins early in the primary auditory cortex and carries on in the superior temporal gyrus along lateral-medial, anterior-posterior and inferior-superior gradients. It is the dynamical interface of both auditory cortices and the interaction effects between different distinctive features that generate the categorical representations of vowels.


2020 ◽  
Author(s):  
Jean-Pierre R. Falet ◽  
Jonathan Côté ◽  
Veronica Tarka ◽  
Zaida-Escila Martinez-Moreno ◽  
Patrice Voss ◽  
...  

AbstractWe present a novel method to map the functional organization of the human auditory cortex noninvasively using magnetoencephalography (MEG). More specifically, this method estimates via reverse correlation the spectrotemporal receptive fields (STRF) in response to a dense pure tone stimulus, from which important spectrotemporal characteristics of neuronal processing can be extracted and mapped back onto the cortex surface. We show that several neuronal populations can be found examining the spectrotemporal characteristics of their STRFs, and demonstrate how these can be used to generate tonotopic gradient maps. In doing so, we show that the spatial resolution of MEG is sufficient to reliably extract important information about the spatial organization of the auditory cortex, while enabling the analysis of complex temporal dynamics of auditory processing such as best temporal modulation rate and response latency given its excellent temporal resolution. Furthermore, because spectrotemporally dense auditory stimuli can be used with MEG, the time required to acquire the necessary data to generate tonotopic maps is significantly less for MEG than for other neuroimaging tools that acquire BOLD-like signals.


NeuroImage ◽  
2014 ◽  
Vol 101 ◽  
pp. 598-609 ◽  
Author(s):  
Kirill V. Nourski ◽  
Mitchell Steinschneider ◽  
Bob McMurray ◽  
Christopher K. Kovach ◽  
Hiroyuki Oya ◽  
...  

1998 ◽  
Vol 30 (6) ◽  
pp. 386-388
Author(s):  
I. O. Volkov ◽  
M. D. Noh ◽  
C. P. Garrell ◽  
M. A. Howard

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esti Blanco-Elorrieta ◽  
Laura Gwilliams ◽  
Alec Marantz ◽  
Liina Pylkkänen

AbstractSpeech is a complex and ambiguous acoustic signal that varies significantly within and across speakers. Despite the processing challenge that such variability poses, humans adapt to systematic variations in pronunciation rapidly. The goal of this study is to uncover the neurobiological bases of the attunement process that enables such fluent comprehension. Twenty-four native English participants listened to words spoken by a “canonical” American speaker and two non-canonical speakers, and performed a word-picture matching task, while magnetoencephalography was recorded. Non-canonical speech was created by including systematic phonological substitutions within the word (e.g. [s] → [sh]). Activity in the auditory cortex (superior temporal gyrus) was greater in response to substituted phonemes, and, critically, this was not attenuated by exposure. By contrast, prefrontal regions showed an interaction between the presence of a substitution and the amount of exposure: activity decreased for canonical speech over time, whereas responses to non-canonical speech remained consistently elevated. Grainger causality analyses further revealed that prefrontal responses serve to modulate activity in auditory regions, suggesting the recruitment of top-down processing to decode non-canonical pronunciations. In sum, our results suggest that the behavioural deficit in processing mispronounced phonemes may be due to a disruption to the typical exchange of information between the prefrontal and auditory cortices as observed for canonical speech.


Sign in / Sign up

Export Citation Format

Share Document