scholarly journals Superior anticoagulation strategies for renal replacement therapy in critically ill patients with COVID-19: a cohort study

Author(s):  
Frederic Arnold ◽  
Lukas Westermann ◽  
Siegbert Rieg ◽  
Elke Neumann-Haefelin ◽  
Paul Biever ◽  
...  

AbstractBackgroundCoronavirus disease 2019 (COVID-19) patients who are admitted to intensive care units (ICU) have a high risk of requiring renal replacement therapy (RRT) due to acute kidney injury (AKI). Concomitantly, COVID-19 patients exhibit a state of hypercoagulability that can affect circuit lifespan. An optimal anticoagulation strategy is therefore needed in order to maintain circuit patency and therapeutic efficiency of RRT.MethodsRetrospective single-centre cohort study on 71 critically ill COVID-19 patients at the University of Freiburg Medical Center. Included were all patients aged 18 years and older with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that were admitted to ICU between February 26 and May 21, 2020. We collected data on the COVID-19 disease course, AKI, RRT, thromboembolic events and anticoagulation. Primary outcome of the study was the effect of different anticoagulation strategies during RRT on extracorporeal circuit lifespans.ResultsAnticoagulation during continuous veno-venous haemodialysis (CVVHD) was performed with unfractionated heparin (UFH) or citrate. Mean treatment time in the UFH group was 21.3h (SEM: ±5.6h). Mean treatment time in the citrate group was 45.6h (SEM: ±2.7h). Citrate anticoagulation prolonged treatment duration significantly by 24.4h (p=0.0014). Anticoagulation during sustained low-efficiency daily dialysis (SLEDD) was performed with UFH, argatroban or low molecular weight heparin (LMWH). Mean dialysis time with UFH was 8.1h (SEM: ±1.3h), argatroban 8.0h (SEM: ±0.9h) and LMWH 11.8h (SEM: ±0.5h). Compared to UFH and argatroban, LMWH significantly prolonged treatment times by 3.7h (p=0.0082) and 3.8h (p=0.0024), respectively.ConclusionsUFH fails to prevent early clotting events in dialysis circuits. For patients, who do not require an effective systemic anticoagulation, regional citrate dialysis is the most effective strategy in our cohort. For patients, who require an effective systemic anticoagulation treatment, the usage of LMWH results in the longest circuit life spans.FundingBerta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Germany. Else Kröner-Fresenius-Stiftung, Bad Homburg, Germany. Deutsche Forschungsgemeinschaft, Bonn, Germany.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Frederic Arnold ◽  
Lukas Westermann ◽  
Siegbert Rieg ◽  
Elke Neumann-Haefelin ◽  
Paul Marc Biever ◽  
...  

Abstract Background Critically ill coronavirus disease 2019 (COVID-19) patients have a high risk of acute kidney injury (AKI) that requires renal replacement therapy (RRT). A state of hypercoagulability reduces circuit life spans. To maintain circuit patency and therapeutic efficiency, an optimized anticoagulation strategy is needed. This study investigates whether alternative anticoagulation strategies for RRT during COVID-19 are superior to administration of unfractionated heparin (UFH). Methods Retrospective cohort study on 71 critically ill COVID-19 patients (≥18 years), admitted to intensive care units at a tertiary health care facility in the southwestern part of Germany between February 26 and May 21, 2020. We collected data on the disease course, AKI, RRT, and thromboembolic events. Four different anticoagulatory regimens were administered. Anticoagulation during continuous veno-venous hemodialysis (CVVHD) was performed with UFH or citrate. Anticoagulation during sustained low-efficiency daily dialysis (SLEDD) was performed with UFH, argatroban, or low molecular weight heparin (LMWH). Primary outcome is the effect of the anticoagulation regimen on mean treatment times of RRT. Results In patients receiving CVVHD, mean treatment time in the UFH group was 21.3 h (SEM: ±5.6 h), in the citrate group 45.6 h (SEM: ±2.7 h). Citrate anticoagulation significantly prolonged treatment times by 24.4 h (P = .001). In patients receiving SLEDD, mean treatment time with UFH was 8.1 h (SEM: ±1.3 h), with argatroban 8.0 h (SEM: ±0.9 h), and with LMWH 11.8 h (SEM: ±0.5 h). LMWH significantly prolonged treatment times by 3.7 h (P = .008) and 3.8 h (P = .002), respectively. Conclusions UFH fails to prevent early clotting events in the dialysis circuit during COVID-19. For patients, who do not require effective systemic anticoagulation, regional citrate dialysis is the most effective strategy. For patients, who require effective systemic anticoagulation, the usage of LMWH results in the longest circuit life spans. The proposed anticoagulatory strategies are safe, can easily be monitored, and allow an individualized treatment. Graphical abstract


Pharmacy ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Soo Min Jang ◽  
Sergio Infante ◽  
Amir Abdi Pour

Acute kidney injury is very common in critically ill patients requiring renal replacement therapy. Despite the advancement in medicine, the mortality rate from septic shock can be as high as 60%. This manuscript describes drug-dosing considerations and challenges for clinicians. For instance, drugs’ pharmacokinetic changes (e.g., decreased protein binding and increased volume of distribution) and drug property changes in critical illness affecting solute or drug clearance during renal replacement therapy. Moreover, different types of renal replacement therapy (intermittent hemodialysis, prolonged intermittent renal replacement therapy or sustained low-efficiency dialysis, and continuous renal replacement therapy) are discussed to describe how to optimize the drug administration strategies. With updated literature, pharmacodynamic targets and empirical dosing recommendations for commonly used antibiotics in critically ill patients receiving continuous renal replacement therapy are outlined. It is vital to utilize local epidemiology and resistance patterns to select appropriate antibiotics to optimize clinical outcomes. Therapeutic drug monitoring should be used, when possible. This review should be used as a guide to develop a patient-specific antibiotic therapy plan.


2002 ◽  
Vol 39 (3) ◽  
pp. 556-570 ◽  
Author(s):  
Mark R. Marshall ◽  
Thomas A. Golper ◽  
Mary J. Shaver ◽  
Muhammad G. Alam ◽  
Dinesh K. Chatoth

2001 ◽  
Vol 60 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Mark R. Marshall ◽  
Thomas A. Golper ◽  
Mary J. Shaver ◽  
Muhammad G. Alam ◽  
Dinesh K. Chatoth

Sign in / Sign up

Export Citation Format

Share Document