scholarly journals Activity Mapping the Acyl Carrier Protein - Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis

2020 ◽  
Author(s):  
Jeffrey T. Mindrebo ◽  
Laetitia E. Misson ◽  
Caitlin Johnson ◽  
Joseph P. Noel ◽  
Michael D. Burkart

ABSTRACTElongating ketosynthases (KSs) catalyze carbon-carbon bond forming reactions during the committed step for each round of chain extension in both fatty acid synthases (FASs) and polyketide synthases (PKSs). A small α-helical acyl carrier protein (ACP) shuttles fatty acyl intermediates between enzyme active sites. To accomplish this task, ACP relies on a series of dynamic interactions with multiple partner enzymes of FAS and associated FAS-dependent pathways. Recent structures of the Escherichia coli FAS ACP, AcpP, in covalent complexes with its two cognate elongating KSs, FabF and FabB, provide high-resolution detail of these interfaces, but a systematic analysis of specific interfacial interactions responsible for stabilizing these complexes has not yet been undertaken. Here, we use site-directed mutagenesis with both in vitro and in vivo activity analyses to quantitatively evaluate these contacting surfaces between AcpP and FabF. We delineate the FabF interface into three interacting regions and demonstrate the effects of point mutants, double mutants, and region delete variants. Results from these analyses reveal a robust and modular FabF interface capable of tolerating seemingly critical interface mutations with only the deletion of entire regions significantly compromising activity. Structure and sequence analysis of FabF orthologs from related type II FAS pathways indicate significant conservation of type II FAS KS interface residues and, overall, support its delineation into interaction regions. These findings strengthen our mechanistic understanding of molecular recognition events between ACPs and FAS enzymes and provide a blueprint for engineering ACP-dependent biosynthetic pathways.

2004 ◽  
Vol 279 (50) ◽  
pp. 52593-52602 ◽  
Author(s):  
Matthew S. Kimber ◽  
Fernando Martin ◽  
Yingjie Lu ◽  
Simon Houston ◽  
Masoud Vedadi ◽  
...  

Type II fatty acid biosynthesis systems are essential for membrane formation in bacteria, making the constituent proteins of this pathway attractive targets for antibacterial drug discovery. The third step in the elongation cycle of the type II fatty acid biosynthesis is catalyzed by β-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase. There are two isoforms. FabZ, which catalyzes the dehydration of (3R)-hydroxyacyl-ACP totrans-2-acyl-ACP, is a universally expressed component of the bacterial type II system. FabA, the second isoform, as has more limited distribution in nature and, in addition to dehydration, also carries out the isomerization oftrans-2- tocis-3-decenoyl-ACP as an essential step in unsaturated fatty acid biosynthesis. We report the structure of FabZ from the important human pathogenPseudomonas aeruginosaat 2.5 Å of resolution.PaFabZ is a hexamer (trimer of dimers) with the His/Glu catalytic dyad located within a deep, narrow tunnel formed at the dimer interface. Site-directed mutagenesis experiments showed that the obvious differences in the active site residues that distinguish the FabA and FabZ subfamilies of dehydratases do not account for the unique ability of FabA to catalyze isomerization. Because the catalytic machinery of the two enzymes is practically indistinguishable, the structural differences observed in the shape of the substrate binding channels of FabA and FabZ lead us to hypothesize that the different shapes of the tunnels control the conformation and positioning of the bound substrate, allowing FabA, but not FabZ, to catalyze the isomerization reaction.


2007 ◽  
Vol 14 (7) ◽  
pp. 775-783 ◽  
Author(s):  
Ashish Misra ◽  
Shailendra Kumar Sharma ◽  
Namita Surolia ◽  
Avadhesha Surolia

Planta ◽  
2010 ◽  
Vol 231 (6) ◽  
pp. 1277-1289 ◽  
Author(s):  
Damián González-Mellado ◽  
Penny von Wettstein-Knowles ◽  
Rafael Garcés ◽  
Enrique Martínez-Force

2019 ◽  
Vol 17 (19) ◽  
pp. 4720-4724 ◽  
Author(s):  
Tony D. Davis ◽  
Jennifer M. Michaud ◽  
Michael D. Burkart

Fluorescent probe design and site-directed mutagenesis unveil new activity-based chemical reporters for fatty acid and polyketide synthase acyl-carrier protein transacylases.


2010 ◽  
Vol 17 (7) ◽  
pp. 776-785 ◽  
Author(s):  
Eliza Płoskoń ◽  
Christopher J. Arthur ◽  
Amelia L.P. Kanari ◽  
Pakorn Wattana-amorn ◽  
Christopher Williams ◽  
...  

Author(s):  
N. Silas ◽  
R. Demissie ◽  
L.W.M. Fung

An NADH-dependent enoyl-acyl carrier protein reductase, FabI, catalyzes the final step of bacterial fatty acid biosynthesis, reducing the double bond of trans-2-enoyl-ACP to a single bond forming acyl-ACP. Given its importance in bacterial fatty acid synthesis, FabI has become a recognized drug target. Triclosan, a diphenyl ether, targets the FabI, inhibits its activity, and stops bacterial growth. However, as a consequence of triclosan's popularity, and thus its overuse, bacterial resistance to triclosan has been reported. The mutation G93V in Escherichia coli (E. coli) FabI allows E. coli to resist the action of triclosan. We have identified the equivalent residue of G93 in Francisella tularensis FabI (ftFabI) as A92, and prepared a mutant A92V. E. coli cells, transformed with a plasmid containing the ftFabI-A92V gene, were grown, and the gene was overexpressed. From two growths (6 G of cells), 62 mG of protein, with a histidine tag, at a purity of 85% were obtained. Enzymatic activity was assayed by monitoring the absorbance of NADH at 340 nm. In the presence of triclosan, the wild-type protein was almost completely inhibited after NADH was converted to NAD$^+$ in the enzymatic reaction; however the A92V mutant exhibited similar activity with and without triclosan, demonstrating that triclosan resistance may also develop in Francisella tularensis.


Sign in / Sign up

Export Citation Format

Share Document